OTHMAN7 commited on
Commit
758acc2
·
verified ·
1 Parent(s): 9c15214

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+
10
+ ---
11
+
12
+ # {MODEL_NAME}
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+
18
+ ## Usage (Sentence-Transformers)
19
+
20
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
+
22
+ ```
23
+ pip install -U sentence-transformers
24
+ ```
25
+
26
+ Then you can use the model like this:
27
+
28
+ ```python
29
+ from sentence_transformers import SentenceTransformer
30
+ sentences = ["This is an example sentence", "Each sentence is converted"]
31
+
32
+ model = SentenceTransformer('{MODEL_NAME}')
33
+ embeddings = model.encode(sentences)
34
+ print(embeddings)
35
+ ```
36
+
37
+
38
+
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ def cls_pooling(model_output, attention_mask):
48
+ return model_output[0][:,0]
49
+
50
+
51
+ # Sentences we want sentence embeddings for
52
+ sentences = ['This is an example sentence', 'Each sentence is converted']
53
+
54
+ # Load model from HuggingFace Hub
55
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
56
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
57
+
58
+ # Tokenize sentences
59
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
60
+
61
+ # Compute token embeddings
62
+ with torch.no_grad():
63
+ model_output = model(**encoded_input)
64
+
65
+ # Perform pooling. In this case, cls pooling.
66
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
67
+
68
+ print("Sentence embeddings:")
69
+ print(sentence_embeddings)
70
+ ```
71
+
72
+
73
+
74
+ ## Evaluation Results
75
+
76
+ <!--- Describe how your model was evaluated -->
77
+
78
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
79
+
80
+
81
+ ## Training
82
+ The model was trained with the parameters:
83
+
84
+ **DataLoader**:
85
+
86
+ `torch.utils.data.dataloader.DataLoader` of length 283 with parameters:
87
+ ```
88
+ {'batch_size': 1, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
89
+ ```
90
+
91
+ **Loss**:
92
+
93
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
94
+ ```
95
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
96
+ ```
97
+
98
+ Parameters of the fit()-Method:
99
+ ```
100
+ {
101
+ "epochs": 2,
102
+ "evaluation_steps": 50,
103
+ "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
104
+ "max_grad_norm": 1,
105
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
106
+ "optimizer_params": {
107
+ "lr": 2e-05
108
+ },
109
+ "scheduler": "WarmupLinear",
110
+ "steps_per_epoch": null,
111
+ "warmup_steps": 56,
112
+ "weight_decay": 0.01
113
+ }
114
+ ```
115
+
116
+
117
+ ## Full Model Architecture
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
121
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ )
123
+ ```
124
+
125
+ ## Citing & Authors
126
+
127
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-large-en-v1.5",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_norm_type": "layer_norm",
24
+ "logn_attention_clip1": false,
25
+ "logn_attention_scale": false,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "new",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "pack_qkv": true,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "rope",
33
+ "rope_scaling": {
34
+ "factor": 2.0,
35
+ "type": "ntk"
36
+ },
37
+ "rope_theta": 160000,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.40.2",
40
+ "type_vocab_size": 2,
41
+ "unpad_inputs": false,
42
+ "use_memory_efficient_attention": false,
43
+ "vocab_size": 30528
44
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.7.0",
4
+ "transformers": "4.40.2",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@1,cos_sim-Accuracy@3,cos_sim-Accuracy@5,cos_sim-Accuracy@10,cos_sim-Precision@1,cos_sim-Recall@1,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-Precision@5,cos_sim-Recall@5,cos_sim-Precision@10,cos_sim-Recall@10,cos_sim-MRR@10,cos_sim-NDCG@10,cos_sim-MAP@100,dot_score-Accuracy@1,dot_score-Accuracy@3,dot_score-Accuracy@5,dot_score-Accuracy@10,dot_score-Precision@1,dot_score-Recall@1,dot_score-Precision@3,dot_score-Recall@3,dot_score-Precision@5,dot_score-Recall@5,dot_score-Precision@10,dot_score-Recall@10,dot_score-MRR@10,dot_score-NDCG@10,dot_score-MAP@100
2
+ 0,50,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238499893536833
3
+ 0,100,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238499893536833
4
+ 0,150,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238499893536833
5
+ 0,200,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
6
+ 0,250,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
7
+ 0,-1,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
8
+ 1,50,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
9
+ 1,100,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
10
+ 1,150,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
11
+ 1,200,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
12
+ 1,250,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
13
+ 1,-1,0.6395759717314488,0.7915194346289752,0.8586572438162544,0.911660777385159,0.6395759717314488,0.6395759717314488,0.26383981154299174,0.7915194346289752,0.17173144876325086,0.8586572438162544,0.09116607773851589,0.911660777385159,0.7295277357114811,0.7735582961825387,0.733583319700082,0.6219081272084805,0.7879858657243817,0.8515901060070671,0.9081272084805654,0.6219081272084805,0.6219081272084805,0.2626619552414605,0.7879858657243817,0.1703180212014134,0.8515901060070671,0.09081272084805653,0.9081272084805654,0.7195650344943632,0.7653929862733173,0.7238563907466263
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6a0493462208e27ff5a8ae7cc25b9f829b406efd74b3139d2f4ed9d6aba506
3
+ size 1736585680
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 8000,
49
+ "model_max_length": 32768,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff