--- license: mit datasets: - muse-bench/MUSE-News language: - en base_model: - muse-bench/MUSE-books_target pipeline_tag: text-generation library_name: transformers tags: - unlearn - machine-unlearning - llm-unlearning - data-privacy - large-language-models - trustworthy-ai - trustworthy-machine-learning - language-model --- # SimNPO-Unlearned Model on Task "MUSE - News" ## Model Details - **Unlearning**: - **Task**: [🤗datasets/muse-bench/MUSE-News](https://huggingface.co/datasets/muse-bench/MUSE-News) - **Method**: [SimNPO](https://arxiv.org/abs/2410.07163) - **Origin Model**: [🤗muse-bench/MUSE-news_target](https://huggingface.co/muse-bench/MUSE-news_target) - **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple) - **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163) ## Unlearning Algorithm This model uses the `SimNPO` unlearning algorithm with the following optimization objective: $$\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)]$$ Unlearning hyper-parameters: - Learning Rate: `1e-5` - beta: `0.7` - lambda: `1.0` - gamma: `3.0` ## Loading the Model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-News-llama-2-7b", torch_dtype=torch.bfloat16, device_map='auto') ``` ## Evaluation Results ||VerbMem Df|KnowMem Df|PrivLeak|KnowMem Dr| |---|---|---|---|---| |Origin|58.29|62.93|-98.71|54.31| |Retrain|20.75|33.32|0.00|53.79| |NPO|0.00|56.93|56.93|108.91| |**SimNPO**|12.90|47.09|11.90|40.31| ## Citation If you use this model in your research, please cite: ``` @article{fan2024simplicity, title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning}, author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia}, journal={arXiv preprint arXiv:2410.07163}, year={2024} } ``` ## Reporting Issues Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)