Delete modeling_HelpingAI.py
Browse files- modeling_HelpingAI.py +0 -670
modeling_HelpingAI.py
DELETED
|
@@ -1,670 +0,0 @@
|
|
| 1 |
-
""" HelpingAI model . """
|
| 2 |
-
from typing import Optional, Tuple, Union
|
| 3 |
-
import math
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
import torch.utils.checkpoint
|
| 7 |
-
from transformers import AutoModel, AutoModelForCausalLM
|
| 8 |
-
from torch import nn
|
| 9 |
-
from torch.nn import CrossEntropyLoss
|
| 10 |
-
from transformers.modeling_outputs import (
|
| 11 |
-
BaseModelOutputWithPast,
|
| 12 |
-
CausalLMOutputWithPast,
|
| 13 |
-
)
|
| 14 |
-
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
-
from transformers.utils import logging
|
| 16 |
-
from .configuration_HelpingAI import HelpingAIConfig
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
logger = logging.get_logger(__name__)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 23 |
-
def _make_causal_mask(
|
| 24 |
-
input_ids_shape: torch.Size,
|
| 25 |
-
dtype: torch.dtype,
|
| 26 |
-
device: torch.device,
|
| 27 |
-
past_key_values_length: int = 0,
|
| 28 |
-
):
|
| 29 |
-
"""Make causal mask used for bi-directional self-attention."""
|
| 30 |
-
batch_size, tgt_len = input_ids_shape
|
| 31 |
-
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
| 32 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 33 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 34 |
-
mask = mask.to(dtype)
|
| 35 |
-
if past_key_values_length > 0:
|
| 36 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 37 |
-
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 41 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 42 |
-
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
| 43 |
-
batch_size, src_len = mask.size()
|
| 44 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 45 |
-
|
| 46 |
-
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
| 47 |
-
inverted_mask = 1.0 - expanded_mask
|
| 48 |
-
|
| 49 |
-
return inverted_mask.masked_fill(
|
| 50 |
-
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class RotaryEmbedding(nn.Module):
|
| 55 |
-
def __init__(
|
| 56 |
-
self,
|
| 57 |
-
dim: int,
|
| 58 |
-
max_position_embeddings: int,
|
| 59 |
-
base: int = 10_000,
|
| 60 |
-
device: Optional[torch.device] = None,
|
| 61 |
-
):
|
| 62 |
-
super().__init__()
|
| 63 |
-
|
| 64 |
-
self.dim = dim
|
| 65 |
-
self.max_position_embeddings = max_position_embeddings
|
| 66 |
-
self.base = base
|
| 67 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 68 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 69 |
-
|
| 70 |
-
# Build here to make `torch.jit.trace` work.
|
| 71 |
-
self._set_cos_sin_cache(
|
| 72 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
| 76 |
-
self.max_seq_len_cached = seq_len
|
| 77 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
| 78 |
-
|
| 79 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 80 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 81 |
-
freqs = torch.outer(t, self.inv_freq)
|
| 82 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 83 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 84 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 85 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 86 |
-
|
| 87 |
-
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
|
| 88 |
-
# x: [batch_size, num_heads, seq_len, head_size]
|
| 89 |
-
if seq_len > self.max_seq_len_cached:
|
| 90 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
|
| 91 |
-
return (
|
| 92 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 93 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def rotate_half(x: torch.Tensor):
|
| 98 |
-
"""Rotates half the hidden dims of the input."""
|
| 99 |
-
x1, x2 = torch.chunk(x, 2, dim=-1)
|
| 100 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 104 |
-
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 105 |
-
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 106 |
-
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
| 107 |
-
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
| 108 |
-
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
| 109 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 110 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 111 |
-
return q_embed, k_embed
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
class MLP(nn.Module):
|
| 115 |
-
def __init__(self, config: HelpingAIConfig):
|
| 116 |
-
super().__init__()
|
| 117 |
-
self.config = config
|
| 118 |
-
self.hidden_size = config.hidden_size
|
| 119 |
-
self.intermediate_size = config.intermediate_size
|
| 120 |
-
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 121 |
-
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 122 |
-
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 123 |
-
self.act_fn = nn.SiLU()
|
| 124 |
-
|
| 125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 126 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 130 |
-
"""
|
| 131 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 132 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 133 |
-
"""
|
| 134 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 135 |
-
if n_rep == 1:
|
| 136 |
-
return hidden_states
|
| 137 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 138 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
class Attention(nn.Module):
|
| 142 |
-
def __init__(self, config: HelpingAIConfig):
|
| 143 |
-
super().__init__()
|
| 144 |
-
self.config = config
|
| 145 |
-
self.hidden_size = config.hidden_size
|
| 146 |
-
self.num_heads = config.num_attention_heads
|
| 147 |
-
self.head_dim = self.hidden_size // self.num_heads
|
| 148 |
-
self.num_key_value_heads = config.num_key_value_heads
|
| 149 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 150 |
-
self.max_position_embeddings = config.max_position_embeddings
|
| 151 |
-
|
| 152 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 153 |
-
raise ValueError(
|
| 154 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 155 |
-
f" and `num_heads`: {self.num_heads})."
|
| 156 |
-
)
|
| 157 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 158 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 159 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 160 |
-
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 161 |
-
|
| 162 |
-
self._init_rope()
|
| 163 |
-
|
| 164 |
-
def _init_rope(self):
|
| 165 |
-
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
| 166 |
-
self.rotary_emb = RotaryEmbedding(
|
| 167 |
-
self.rotary_ndims,
|
| 168 |
-
max_position_embeddings=self.config.max_position_embeddings,
|
| 169 |
-
base=self.config.rope_theta,
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
def forward(
|
| 173 |
-
self,
|
| 174 |
-
hidden_states: torch.FloatTensor,
|
| 175 |
-
attention_mask: torch.FloatTensor,
|
| 176 |
-
position_ids: torch.LongTensor,
|
| 177 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 178 |
-
output_attentions: Optional[bool] = False,
|
| 179 |
-
use_cache: Optional[bool] = False,
|
| 180 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 181 |
-
bsz, q_len, _ = hidden_states.size()
|
| 182 |
-
|
| 183 |
-
query_states = self.q_proj(hidden_states)
|
| 184 |
-
key_states = self.k_proj(hidden_states)
|
| 185 |
-
value_states = self.v_proj(hidden_states)
|
| 186 |
-
|
| 187 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 188 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 189 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 190 |
-
|
| 191 |
-
query_rot = query_states[..., : self.rotary_ndims]
|
| 192 |
-
query_pass = query_states[..., self.rotary_ndims :]
|
| 193 |
-
key_rot = key_states[..., : self.rotary_ndims]
|
| 194 |
-
key_pass = key_states[..., self.rotary_ndims :]
|
| 195 |
-
|
| 196 |
-
kv_seq_len = key_states.shape[-2]
|
| 197 |
-
if past_key_value is not None:
|
| 198 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
| 199 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 200 |
-
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
| 201 |
-
|
| 202 |
-
# [batch_size, num_heads, seq_len, head_dim]
|
| 203 |
-
query_states = torch.cat((query_states, query_pass), dim=-1)
|
| 204 |
-
key_states = torch.cat((key_states, key_pass), dim=-1)
|
| 205 |
-
|
| 206 |
-
if past_key_value is not None:
|
| 207 |
-
# Reuse k, v, self_attention
|
| 208 |
-
key_states = torch.cat((past_key_value[0], key_states), dim=2)
|
| 209 |
-
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
| 210 |
-
|
| 211 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
| 212 |
-
|
| 213 |
-
# Repeat k/v heads if n_kv_heads < n_heads
|
| 214 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 215 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 216 |
-
|
| 217 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 218 |
-
|
| 219 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 220 |
-
raise ValueError(
|
| 221 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 222 |
-
f" {attn_weights.size()}"
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
if attention_mask is not None:
|
| 226 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 227 |
-
raise ValueError(
|
| 228 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 229 |
-
)
|
| 230 |
-
attn_weights = attn_weights + attention_mask
|
| 231 |
-
|
| 232 |
-
# Upcast attention to fp32
|
| 233 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 234 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
| 235 |
-
|
| 236 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 237 |
-
raise ValueError(
|
| 238 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 239 |
-
f" {attn_output.size()}"
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
# Merge heads
|
| 243 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 244 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 245 |
-
|
| 246 |
-
# Final linear projection
|
| 247 |
-
attn_output = self.o_proj(attn_output)
|
| 248 |
-
|
| 249 |
-
if not output_attentions:
|
| 250 |
-
attn_weights = None
|
| 251 |
-
|
| 252 |
-
return attn_output, attn_weights, past_key_value
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
class DecoderLayer(nn.Module):
|
| 256 |
-
def __init__(self, config: HelpingAIConfig):
|
| 257 |
-
super().__init__()
|
| 258 |
-
self.self_attn = Attention(config)
|
| 259 |
-
self.mlp = MLP(config)
|
| 260 |
-
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
| 261 |
-
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
| 262 |
-
|
| 263 |
-
def forward(
|
| 264 |
-
self,
|
| 265 |
-
hidden_states: Optional[torch.FloatTensor],
|
| 266 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
| 267 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 268 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 269 |
-
output_attentions: Optional[bool] = False,
|
| 270 |
-
use_cache: Optional[bool] = False,
|
| 271 |
-
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
| 272 |
-
residual = hidden_states
|
| 273 |
-
|
| 274 |
-
hidden_states = self.input_layernorm(hidden_states)
|
| 275 |
-
|
| 276 |
-
# Self Attention
|
| 277 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 278 |
-
hidden_states=hidden_states,
|
| 279 |
-
attention_mask=attention_mask,
|
| 280 |
-
position_ids=position_ids,
|
| 281 |
-
past_key_value=past_key_value,
|
| 282 |
-
output_attentions=output_attentions,
|
| 283 |
-
use_cache=use_cache,
|
| 284 |
-
)
|
| 285 |
-
hidden_states = residual + hidden_states
|
| 286 |
-
|
| 287 |
-
# Fully Connected
|
| 288 |
-
residual = hidden_states
|
| 289 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 290 |
-
hidden_states = self.mlp(hidden_states)
|
| 291 |
-
hidden_states = residual + hidden_states
|
| 292 |
-
|
| 293 |
-
outputs = (hidden_states,)
|
| 294 |
-
|
| 295 |
-
if output_attentions:
|
| 296 |
-
outputs += (self_attn_weights,)
|
| 297 |
-
|
| 298 |
-
if use_cache:
|
| 299 |
-
outputs += (present_key_value,)
|
| 300 |
-
|
| 301 |
-
return outputs
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
class HelpingAIPreTrainedModel(PreTrainedModel):
|
| 305 |
-
"""An abstract class to handle weights initialization and a simple interface
|
| 306 |
-
for downloading and loading pretrained models.
|
| 307 |
-
"""
|
| 308 |
-
|
| 309 |
-
config_class = HelpingAIConfig
|
| 310 |
-
base_model_prefix = "transformer"
|
| 311 |
-
supports_gradient_checkpointing = True
|
| 312 |
-
_no_split_modules = ["DecoderLayer"]
|
| 313 |
-
_skip_keys_device_placement = "past_key_values"
|
| 314 |
-
|
| 315 |
-
def _init_weights(self, module: nn.Module):
|
| 316 |
-
"""Initialize the weights"""
|
| 317 |
-
if isinstance(module, nn.Linear):
|
| 318 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 319 |
-
if module.bias is not None:
|
| 320 |
-
module.bias.data.zero_()
|
| 321 |
-
elif isinstance(module, nn.Embedding):
|
| 322 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 323 |
-
if module.padding_idx is not None:
|
| 324 |
-
module.weight.data[module.padding_idx].zero_()
|
| 325 |
-
elif isinstance(module, nn.LayerNorm):
|
| 326 |
-
module.bias.data.zero_()
|
| 327 |
-
module.weight.data.fill_(1.0)
|
| 328 |
-
|
| 329 |
-
def _set_gradient_checkpointing(self, module: nn.Module, value=False):
|
| 330 |
-
if isinstance(module, HelpingAIModel):
|
| 331 |
-
module.gradient_checkpointing = value
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
class HelpingAIModel(HelpingAIPreTrainedModel):
|
| 335 |
-
def __init__(self, config: HelpingAIConfig):
|
| 336 |
-
super().__init__(config)
|
| 337 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
| 338 |
-
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 339 |
-
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
| 340 |
-
|
| 341 |
-
self.gradient_checkpointing = False
|
| 342 |
-
# Initialize weights and apply final processing
|
| 343 |
-
self.post_init()
|
| 344 |
-
|
| 345 |
-
def get_input_embeddings(self):
|
| 346 |
-
return self.embed_tokens
|
| 347 |
-
|
| 348 |
-
def set_input_embeddings(self, value: nn.Module):
|
| 349 |
-
self.embed_tokens = value
|
| 350 |
-
|
| 351 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 352 |
-
def _prepare_decoder_attention_mask(
|
| 353 |
-
self,
|
| 354 |
-
attention_mask: torch.Tensor,
|
| 355 |
-
input_shape: torch.Size,
|
| 356 |
-
inputs_embeds: torch.Tensor,
|
| 357 |
-
past_key_values_length: int,
|
| 358 |
-
):
|
| 359 |
-
# Create causal mask
|
| 360 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
| 361 |
-
combined_attention_mask = None
|
| 362 |
-
if input_shape[-1] > 1:
|
| 363 |
-
combined_attention_mask = _make_causal_mask(
|
| 364 |
-
input_shape,
|
| 365 |
-
inputs_embeds.dtype,
|
| 366 |
-
device=inputs_embeds.device,
|
| 367 |
-
past_key_values_length=past_key_values_length,
|
| 368 |
-
)
|
| 369 |
-
|
| 370 |
-
if attention_mask is not None:
|
| 371 |
-
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
| 372 |
-
expanded_attn_mask = _expand_mask(
|
| 373 |
-
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
| 374 |
-
).to(inputs_embeds.device)
|
| 375 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 376 |
-
|
| 377 |
-
return combined_attention_mask
|
| 378 |
-
|
| 379 |
-
def forward(
|
| 380 |
-
self,
|
| 381 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 382 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
| 383 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 384 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 385 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 386 |
-
use_cache: Optional[bool] = None,
|
| 387 |
-
output_attentions: Optional[bool] = None,
|
| 388 |
-
output_hidden_states: Optional[bool] = None,
|
| 389 |
-
return_dict: Optional[bool] = None,
|
| 390 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 391 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 392 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 393 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 394 |
-
|
| 395 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 396 |
-
|
| 397 |
-
# Retrieve input_ids and inputs_embeds
|
| 398 |
-
if input_ids is not None and inputs_embeds is not None:
|
| 399 |
-
raise ValueError(
|
| 400 |
-
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
| 401 |
-
)
|
| 402 |
-
elif input_ids is not None:
|
| 403 |
-
batch_size, seq_length = input_ids.shape
|
| 404 |
-
elif inputs_embeds is not None:
|
| 405 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
| 406 |
-
else:
|
| 407 |
-
raise ValueError(
|
| 408 |
-
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 409 |
-
)
|
| 410 |
-
|
| 411 |
-
seq_length_with_past = seq_length
|
| 412 |
-
past_key_values_length = 0
|
| 413 |
-
|
| 414 |
-
if past_key_values is not None:
|
| 415 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
| 416 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 417 |
-
|
| 418 |
-
if position_ids is None:
|
| 419 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 420 |
-
position_ids = torch.arange(
|
| 421 |
-
past_key_values_length,
|
| 422 |
-
seq_length + past_key_values_length,
|
| 423 |
-
dtype=torch.long,
|
| 424 |
-
device=device,
|
| 425 |
-
)
|
| 426 |
-
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 427 |
-
else:
|
| 428 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
| 429 |
-
|
| 430 |
-
if inputs_embeds is None:
|
| 431 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 432 |
-
# Embed positions
|
| 433 |
-
if attention_mask is None:
|
| 434 |
-
attention_mask = torch.ones(
|
| 435 |
-
(batch_size, seq_length_with_past),
|
| 436 |
-
dtype=torch.bool,
|
| 437 |
-
device=inputs_embeds.device,
|
| 438 |
-
)
|
| 439 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
| 440 |
-
attention_mask,
|
| 441 |
-
(batch_size, seq_length),
|
| 442 |
-
inputs_embeds,
|
| 443 |
-
past_key_values_length,
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
hidden_states = inputs_embeds
|
| 447 |
-
|
| 448 |
-
if self.gradient_checkpointing and self.training:
|
| 449 |
-
if use_cache:
|
| 450 |
-
logger.warning(
|
| 451 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 452 |
-
)
|
| 453 |
-
use_cache = False
|
| 454 |
-
|
| 455 |
-
# Decoder layers
|
| 456 |
-
all_hidden_states = () if output_hidden_states else None
|
| 457 |
-
all_self_attns = () if output_attentions else None
|
| 458 |
-
next_decoder_cache = () if use_cache else None
|
| 459 |
-
|
| 460 |
-
for idx, decoder_layer in enumerate(self.layers):
|
| 461 |
-
if output_hidden_states:
|
| 462 |
-
all_hidden_states += (hidden_states,)
|
| 463 |
-
|
| 464 |
-
past_key_value = (
|
| 465 |
-
past_key_values[idx] if past_key_values is not None else None
|
| 466 |
-
)
|
| 467 |
-
|
| 468 |
-
if self.gradient_checkpointing and self.training:
|
| 469 |
-
|
| 470 |
-
def create_custom_forward(module):
|
| 471 |
-
def custom_forward(*inputs):
|
| 472 |
-
# None for past_key_value
|
| 473 |
-
return module(*inputs, past_key_value, output_attentions)
|
| 474 |
-
|
| 475 |
-
return custom_forward
|
| 476 |
-
|
| 477 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 478 |
-
create_custom_forward(decoder_layer),
|
| 479 |
-
hidden_states,
|
| 480 |
-
attention_mask,
|
| 481 |
-
position_ids,
|
| 482 |
-
)
|
| 483 |
-
else:
|
| 484 |
-
layer_outputs = decoder_layer(
|
| 485 |
-
hidden_states,
|
| 486 |
-
attention_mask=attention_mask,
|
| 487 |
-
position_ids=position_ids,
|
| 488 |
-
past_key_value=past_key_value,
|
| 489 |
-
output_attentions=output_attentions,
|
| 490 |
-
use_cache=use_cache,
|
| 491 |
-
)
|
| 492 |
-
|
| 493 |
-
hidden_states = layer_outputs[0]
|
| 494 |
-
|
| 495 |
-
if use_cache:
|
| 496 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 497 |
-
|
| 498 |
-
if output_attentions:
|
| 499 |
-
all_self_attns += (layer_outputs[1],)
|
| 500 |
-
|
| 501 |
-
hidden_states = self.norm(hidden_states)
|
| 502 |
-
|
| 503 |
-
# Add hidden states from the last decoder layer
|
| 504 |
-
if output_hidden_states:
|
| 505 |
-
all_hidden_states += (hidden_states,)
|
| 506 |
-
|
| 507 |
-
next_cache = next_decoder_cache if use_cache else None
|
| 508 |
-
if not return_dict:
|
| 509 |
-
return tuple(
|
| 510 |
-
v
|
| 511 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 512 |
-
if v is not None
|
| 513 |
-
)
|
| 514 |
-
return BaseModelOutputWithPast(
|
| 515 |
-
last_hidden_state=hidden_states,
|
| 516 |
-
past_key_values=next_cache,
|
| 517 |
-
hidden_states=all_hidden_states,
|
| 518 |
-
attentions=all_self_attns,
|
| 519 |
-
)
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
class HelpingAIForCausalLM(HelpingAIPreTrainedModel):
|
| 523 |
-
_tied_weights_keys = ["lm_head.weight"]
|
| 524 |
-
|
| 525 |
-
def __init__(self, config: HelpingAIConfig):
|
| 526 |
-
super().__init__(config)
|
| 527 |
-
|
| 528 |
-
self.model = HelpingAIModel(config)
|
| 529 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 530 |
-
|
| 531 |
-
# Initialize weights and apply final processing
|
| 532 |
-
self.post_init()
|
| 533 |
-
|
| 534 |
-
def get_input_embeddings(self):
|
| 535 |
-
return self.model.embed_tokens
|
| 536 |
-
|
| 537 |
-
def set_input_embeddings(self, value):
|
| 538 |
-
self.model.embed_tokens = value
|
| 539 |
-
|
| 540 |
-
def get_output_embeddings(self):
|
| 541 |
-
return self.lm_head
|
| 542 |
-
|
| 543 |
-
def set_output_embeddings(self, new_embeddings: nn.Module):
|
| 544 |
-
self.lm_head = new_embeddings
|
| 545 |
-
|
| 546 |
-
def get_decoder(self):
|
| 547 |
-
return self.transformer
|
| 548 |
-
|
| 549 |
-
def set_decoder(self, decoder):
|
| 550 |
-
self.transformer = decoder
|
| 551 |
-
|
| 552 |
-
def forward(
|
| 553 |
-
self,
|
| 554 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 555 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
| 556 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 557 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 558 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 559 |
-
labels: Optional[torch.LongTensor] = None,
|
| 560 |
-
use_cache: Optional[bool] = None,
|
| 561 |
-
output_attentions: Optional[bool] = None,
|
| 562 |
-
output_hidden_states: Optional[bool] = None,
|
| 563 |
-
return_dict: Optional[bool] = None,
|
| 564 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 565 |
-
output_attentions = (
|
| 566 |
-
output_attentions
|
| 567 |
-
if output_attentions is not None
|
| 568 |
-
else self.config.output_attentions
|
| 569 |
-
)
|
| 570 |
-
output_hidden_states = (
|
| 571 |
-
output_hidden_states
|
| 572 |
-
if output_hidden_states is not None
|
| 573 |
-
else self.config.output_hidden_states
|
| 574 |
-
)
|
| 575 |
-
return_dict = (
|
| 576 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 577 |
-
)
|
| 578 |
-
|
| 579 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 580 |
-
outputs = self.model(
|
| 581 |
-
input_ids,
|
| 582 |
-
attention_mask=attention_mask,
|
| 583 |
-
position_ids=position_ids,
|
| 584 |
-
past_key_values=past_key_values,
|
| 585 |
-
inputs_embeds=inputs_embeds,
|
| 586 |
-
use_cache=use_cache,
|
| 587 |
-
output_attentions=output_attentions,
|
| 588 |
-
output_hidden_states=output_hidden_states,
|
| 589 |
-
return_dict=return_dict,
|
| 590 |
-
)
|
| 591 |
-
|
| 592 |
-
hidden_states = outputs[0]
|
| 593 |
-
logits = self.lm_head(hidden_states).float()
|
| 594 |
-
|
| 595 |
-
loss = None
|
| 596 |
-
if labels is not None:
|
| 597 |
-
# Shift so that tokens < n predict n
|
| 598 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
| 599 |
-
shift_labels = labels[..., 1:].contiguous()
|
| 600 |
-
# Flatten the tokens
|
| 601 |
-
loss_fct = CrossEntropyLoss()
|
| 602 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 603 |
-
shift_labels = shift_labels.view(-1)
|
| 604 |
-
# Enable model parallelism
|
| 605 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
| 606 |
-
loss = loss_fct(shift_logits, shift_labels)
|
| 607 |
-
|
| 608 |
-
if not return_dict:
|
| 609 |
-
output = (logits,) + outputs[1:]
|
| 610 |
-
return (loss,) + output if loss is not None else output
|
| 611 |
-
|
| 612 |
-
return CausalLMOutputWithPast(
|
| 613 |
-
loss=loss,
|
| 614 |
-
logits=logits,
|
| 615 |
-
past_key_values=outputs.past_key_values,
|
| 616 |
-
hidden_states=outputs.hidden_states,
|
| 617 |
-
attentions=outputs.attentions,
|
| 618 |
-
)
|
| 619 |
-
|
| 620 |
-
def prepare_inputs_for_generation(
|
| 621 |
-
self,
|
| 622 |
-
input_ids,
|
| 623 |
-
past_key_values: Optional[torch.Tensor] = None,
|
| 624 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 625 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
| 626 |
-
**kwargs,
|
| 627 |
-
):
|
| 628 |
-
# Trim decoder_input_ids if past is used
|
| 629 |
-
if past_key_values and past_key_values[0] is not None:
|
| 630 |
-
input_ids = input_ids[:, -1:]
|
| 631 |
-
|
| 632 |
-
position_ids = kwargs.get("position_ids", None)
|
| 633 |
-
if attention_mask is not None and position_ids is None:
|
| 634 |
-
# Create position_ids on the fly for batch generation
|
| 635 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 636 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 637 |
-
if past_key_values:
|
| 638 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 639 |
-
|
| 640 |
-
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 641 |
-
if inputs_embeds is not None and past_key_values is None:
|
| 642 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 643 |
-
else:
|
| 644 |
-
model_inputs = {"input_ids": input_ids}
|
| 645 |
-
|
| 646 |
-
model_inputs.update(
|
| 647 |
-
{
|
| 648 |
-
"attention_mask": attention_mask,
|
| 649 |
-
"past_key_values": past_key_values,
|
| 650 |
-
"use_cache": kwargs.get("use_cache"),
|
| 651 |
-
"position_ids": position_ids,
|
| 652 |
-
}
|
| 653 |
-
)
|
| 654 |
-
return model_inputs
|
| 655 |
-
|
| 656 |
-
@staticmethod
|
| 657 |
-
def _reorder_cache(past_key_values, beam_idx):
|
| 658 |
-
reordered_past = ()
|
| 659 |
-
for layer_past in past_key_values:
|
| 660 |
-
reordered_past += (
|
| 661 |
-
tuple(
|
| 662 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 663 |
-
for past_state in layer_past
|
| 664 |
-
),
|
| 665 |
-
)
|
| 666 |
-
return reordered_past
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
HelpingAIConfig.register_for_auto_class()
|
| 670 |
-
HelpingAIForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|