--- language: - eng base_model: openai/whisper-small-2000 tags: - generated_from_trainer datasets: - Kaggle/transcription_audio metrics: - wer model-index: - name: Whisper Small Eng - noursene results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: medical audio trascription type: Kaggle/transcription_audio args: 'config: eng' metrics: - name: Wer type: wer value: 10.536550234065539 --- # Whisper Small Eng - noursene This model is a fine-tuned version of [openai/whisper-small-2000](https://huggingface.co/openai/whisper-small-2000) on the medical audio trascription dataset. It achieves the following results on the evaluation set: - Loss: 0.1612 - Wer: 10.5366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.191 | 3.0257 | 500 | 0.2308 | 14.0727 | | 0.0375 | 6.0514 | 1000 | 0.1570 | 10.9975 | | 0.0045 | 9.0772 | 1500 | 0.1594 | 10.7598 | | 0.0029 | 12.1029 | 2000 | 0.1612 | 10.5366 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1