---
license: other
license_name: bespoke-lora-trained-license
license_link: https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Image&allowDerivatives=True&allowDifferentLicense=False
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- migrated
- vintage
- style
- vintage style
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: Vintage cover
widget:
- text: 'A Vintage cover of a socially awkward potato'
output:
url: >-
25088592.jpeg
- text: 'A Vintage cover featuring Cthulhu rising from the sea in a great storm'
output:
url: >-
25088594.jpeg
- text: 'A Vintage magazine cover of Rick and Morty'
output:
url: >-
25088589.jpeg
- text: 'Vintage cover featuring Pikachu'
output:
url: >-
25088588.jpeg
- text: 'A Vintage cover featuring Gal Gadot as wonderwoman'
output:
url: >-
25088593.jpeg
- text: 'Portrait of a potato vintage cover'
output:
url: >-
25088590.jpeg
- text: 'Portrait of a vintage cover featuring Snoop Dogg as an alien from another planet'
output:
url: >-
25088591.jpeg
---
# Vintage Cover [FLUX]
An attempt to train a "Vintage cover" style Flux LoRA (I think I did a better job with the SDXL version)
Use 'Vintage cover' in your prompts
## Trigger words You should use `Vintage cover` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Norod78/vintage-cover-flux/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Norod78/vintage-cover-flux', weight_name='b0f2d15fd0d2413bbd1aa12b1dbb4b69_lora.safetensors') image = pipeline('`Vintage cover`').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)