English
flux-test4 / handler.py
John6666's picture
Upload 2 files
015668e verified
import os
from typing import Any, Dict, Union
from PIL import Image
import torch
from diffusers import FluxPipeline
from huggingface_inference_toolkit.logging import logger
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from torchao.quantization import autoquant
import time
import gc
# Set high precision for float32 matrix multiplications.
# This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer.
torch.set_float32_matmul_precision("high")
import torch._dynamo
torch._dynamo.config.suppress_errors = False # for debugging
class EndpointHandler:
def __init__(self, path=""):
self.pipeline = FluxPipeline.from_pretrained(
"NoMoreCopyrightOrg/flux-dev",
torch_dtype=torch.bfloat16,
).to("cuda")
self.pipeline.enable_vae_slicing()
self.pipeline.enable_vae_tiling()
self.pipeline.transformer.fuse_qkv_projections()
self.pipeline.vae.fuse_qkv_projections()
self.pipeline.transformer.to(memory_format=torch.channels_last)
self.pipeline.vae.to(memory_format=torch.channels_last)
apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12)
self.pipeline.transformer = torch.compile(
self.pipeline.transformer, mode="max-autotune-no-cudagraphs",
)
self.pipeline.vae = torch.compile(
self.pipeline.vae, mode="max-autotune-no-cudagraphs",
)
self.pipeline.transformer = autoquant(self.pipeline.transformer, error_on_unseen=False)
self.pipeline.vae = autoquant(self.pipeline.vae, error_on_unseen=False)
gc.collect()
torch.cuda.empty_cache()
start_time = time.time()
print("Start warming-up pipeline")
self.pipeline("Hello world!") # Warm-up for compiling
end_time = time.time()
time_taken = end_time - start_time
print(f"Time taken: {time_taken:.2f} seconds")
def __call__(self, data: Dict[str, Any]) -> Union[Image.Image, None]:
logger.info(f"Received incoming request with {data=}")
try:
if "inputs" in data and isinstance(data["inputs"], str):
prompt = data.pop("inputs")
elif "prompt" in data and isinstance(data["prompt"], str):
prompt = data.pop("prompt")
else:
raise ValueError(
"Provided input body must contain either the key `inputs` or `prompt` with the"
" prompt to use for the image generation, and it needs to be a non-empty string."
)
parameters = data.pop("parameters", {})
num_inference_steps = parameters.get("num_inference_steps", 28)
width = parameters.get("width", 1024)
height = parameters.get("height", 1024)
#guidance_scale = parameters.get("guidance_scale", 3.5)
guidance_scale = parameters.get("guidance", 3.5)
# seed generator (seed cannot be provided as is but via a generator)
seed = parameters.get("seed", 0)
generator = torch.manual_seed(seed)
start_time = time.time()
result = self.pipeline( # type: ignore
prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
end_time = time.time()
time_taken = end_time - start_time
print(f"Time taken: {time_taken:.2f} seconds")
return result
except Exception as e:
print(e)
return None