--- base_model: AI-MO/NuminaMath-7B-TIR license: apache-2.0 pipeline_tag: text-generation tags: - alignment-handbook - generated_from_trainer - llama-cpp - gguf-my-repo widget: - example_title: Math problem messages: - role: user content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$ have two distinct integer roots? output: text: '### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two distinct integer roots, let''s denote these roots by \\( r_1 \\) and \\( r_2 \\).\n\n2. According to Vieta''s formulas, the sum of the roots \\( r_1 + r_2 \\) is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2 \\) is equal to 36.\n\n3. To find the distinct integer pairs \\((r_1, r_2)\\) whose product is 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).\n\n4. From the equation \\( r_1 + r_2 = -k \\), for each valid pair \\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).\n\n5. Finally, since we need the polynomial to have two distinct integer roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.\n\nLet''s start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\). We''ll then determine the values of \\( k \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n# Find all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 = 36\nfactor_pairs = []\n\nfor i in range(1, product_36 + 1):\n if product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] != pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n# Calculate k for each pair and ensure distinct integer roots\nvalid_k_values = set()\nfor r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n valid_k_values.add(k)\n\nprint((len(valid_k_values), sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15, -13])\n```\nThe distinct integer values of \\( k \\) that make the polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore, the number of such values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n' model-index: - name: NuminaMath-7B-TIR results: [] --- # NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF This model was converted to GGUF format from [`AI-MO/NuminaMath-7B-TIR`](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/NuminaMath-7B-TIR-Q8_0-GGUF --hf-file numinamath-7b-tir-q8_0.gguf -c 2048 ```