--- library_name: transformers license: agpl-3.0 base_model: Delta-Vector/Holland-4B-V1 tags: - generated_from_trainer datasets: - NewEden/CivitAI-Prompts-Sharegpt model-index: - name: outputs/out2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Delta-Vector/Holland-4B-V1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/CivitAI-SD-Prompts datasets: - path: NewEden/CivitAI-Prompts-Sharegpt type: chat_template chat_template: chatml roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn dataset_prepared_path: val_set_size: 0.02 output_dir: ./outputs/out2 sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: SDprompter-final wandb_entity: wandb_watch: wandb_name: SDprompter-final wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 1 num_epochs: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 4 saves_per_epoch: 1 debug: weight_decay: 0.01 special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> auto_resume_from_checkpoints: true ```

# outputs/out2 This model is a fine-tuned version of [Delta-Vector/Holland-4B-V1](https://huggingface.co/Delta-Vector/Holland-4B-V1) on the NewEden/CivitAI-Prompts-Sharegpt dataset. It achieves the following results on the evaluation set: - Loss: 3.2782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 4 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.3357 | 0.0416 | 1 | 4.2492 | | 2.9892 | 0.2494 | 6 | 3.6285 | | 2.7364 | 0.4987 | 12 | 3.4675 | | 2.7076 | 0.7481 | 18 | 3.3928 | | 2.757 | 0.9974 | 24 | 3.3484 | | 2.5801 | 1.2078 | 30 | 3.3286 | | 2.6156 | 1.4571 | 36 | 3.3111 | | 2.5308 | 1.7065 | 42 | 3.2999 | | 2.5481 | 1.9558 | 48 | 3.2880 | | 2.5773 | 2.1662 | 54 | 3.2840 | | 2.5269 | 2.4156 | 60 | 3.2822 | | 2.5418 | 2.6649 | 66 | 3.2806 | | 2.4584 | 2.9143 | 72 | 3.2791 | | 2.6515 | 3.1247 | 78 | 3.2789 | | 2.4883 | 3.3740 | 84 | 3.2785 | | 2.4193 | 3.6234 | 90 | 3.2787 | | 2.4337 | 3.8727 | 96 | 3.2782 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0