--- language: - en license: apache-2.0 library_name: transformers datasets: - Intel/orca_dpo_pairs - mlabonne/chatml_dpo_pairs model-index: - name: neuronovo-9B-v0.4 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.33 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.07 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Neuronovo/neuronovo-9B-v0.4 name: Open LLM Leaderboard --- More information about previous [Neuronovo/neuronovo-9B-v0.2](https://huggingface.co/Neuronovo/neuronovo-9B-v0.2) version available here: 🔗[Don't stop DPOptimizing!](https://www.linkedin.com/pulse/dont-stop-dpoptimizing-jan-koco%2525C5%252584-mq4qf) Author: Jan KocoÅ„     🔗[LinkedIn](https://www.linkedin.com/in/jankocon/)     🔗[Google Scholar](https://scholar.google.com/citations?user=pmQHb5IAAAAJ&hl=en&oi=ao)     🔗[ResearchGate](https://www.researchgate.net/profile/Jan-Kocon-2) Changes concerning [Neuronovo/neuronovo-9B-v0.2](https://huggingface.co/Neuronovo/neuronovo-9B-v0.2): 1. **Training Dataset**: In addition to the [Intel/orca_dpo_pairs](Intel/orca_dpo_pairs) dataset, this version incorporates a [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs). The combined datasets enhance the model's capabilities in dialogues and interactive scenarios, further specializing it in natural language understanding and response generation. 2. **Tokenizer and Formatting**: The tokenizer now originates directly from the [Neuronovo/neuronovo-9B-v0.2](https://huggingface.co/Neuronovo/neuronovo-9B-v0.2) model. 3. **Training Configuration**: The training approach has shifted from using `max_steps=200` to `num_train_epochs=1`. This represents a change in the training strategy, focusing on epoch-based training rather than a fixed number of steps. 4. **Learning Rate**: The learning rate has been reduced to a smaller value of `5e-8`. This finer learning rate allows for more precise adjustments during the training process, potentially leading to better model performance. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Neuronovo__neuronovo-9B-v0.4) | Metric |Value| |---------------------------------|----:| |Avg. |73.42| |AI2 Reasoning Challenge (25-Shot)|72.44| |HellaSwag (10-Shot) |88.33| |MMLU (5-Shot) |65.24| |TruthfulQA (0-shot) |71.07| |Winogrande (5-shot) |80.66| |GSM8k (5-shot) |62.77|