--- tags: - autotrain - image-classification - vision widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace license: apache-2.0 pipeline_tag: image-classification datasets: - Pranavkpba2000/skin_cancer_dataset --- # SkinCancer-Classifier(small-sized model) SkinCancer-Classifier is a fine-tuned version of [swin-base](https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k). It was introduced in this [paper](https://arxiv.org/abs/2103.14030) by Liu et al. and first released in this [repository](https://github.com/microsoft/Swin-Transformer). It was fine tuned on this [dataset](https://huggingface.co/datasets/Pranavkpba2000/skin_cancer_dataset). ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ### How to use Here is how to use this model to identify melanoma from a picture of a the affected area of the skin: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests processor = AutoImageProcessor.from_pretrained("NeuronZero/SkinCancerClassifier") model = AutoModelForImageClassification.from_pretrained("NeuronZero/SkinCancerClassifier") # Dataset url: https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic image_url = "https://storage.googleapis.com/kagglesdsdata/datasets/319080/643971/Skin%20cancer%20ISIC%20The%20International%20Skin%20Imaging%20Collaboration/Test/melanoma/ISIC_0000049.jpg?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=databundle-worker-v2%40kaggle-161607.iam.gserviceaccount.com%2F20240403%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240403T164047Z&X-Goog-Expires=345600&X-Goog-SignedHeaders=host&X-Goog-Signature=1a5fb1b640e3e201b6a37d5461ba7b9dbabdbd9e79cf9a2cbdeb4214c45da4e32d4f822297f65fec5128bd824d8bde878adc50e3627b1f7af4baa2d2c46007d89fe8a90a2ef32611c4f0dd92d345883e6fa33faab135896039cf6f6a3bfd44bbbf6d3bd2c58ef2b3dcb92f53c4965a9915c0485db311e9b95ec418f4fad78f294358457f659df2fccebd9d78a43d55a20df347da0ba5622bf46cc35c0f45a429f216b5b19f75f7cf78440723f4f127af968484e62fb05184e2f4b43193f5ff2caf12de2921b18f87bdf3087a79d92aff0331938a4095a075ebc7fe9a517f4dd2740838307b408f22ee99eb39acc8230c7428d648888c493a790f9e7e52168b9b" image = Image.open(requests.get(image_url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```