--- datasets: - HuggingFaceM4/vatex language: - en metrics: - bleu - meteor - rouge pipeline_tag: video-text-to-text inference: true tags: - video-captioning model-index: - name: Caelen results: - task: type: video-captioning dataset: type: video-captioning name: VATEX metrics: - name: CIDEr type: image-captioning value: 67.3 verified: false ---

SpaceTimeGPT - Video Captioning Model

(partial diagrams from 1, 2, 3)

SpaceTimeGPT is a video description generation model capable of spatial and temporal reasoning. Given a video, eight frames are sampled and analyzed by the model. The output is a sentence description of the events that occured in the video, generated using autoregression. ## Architecture and Training Vision Encoder: [timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600) \ Text Decoder: [gpt2](https://huggingface.co/gpt2) The encoder and decoder are initialized using pretrained weights for video classification and sentence completion, respectively. Encoder-decoder cross attention is used to unify the visual and linguistic domains. The model is fine-tuned end-to-end on the video captioning task. See [GitHub repository](https://github.com/Neleac/SpaceTimeGPT) for details. #### Example Inference Code: ```python import av import numpy as np import torch from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel device = "cuda" if torch.cuda.is_available() else "cpu" # load pretrained processor, tokenizer, and model image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") tokenizer = AutoTokenizer.from_pretrained("gpt2") model = VisionEncoderDecoderModel.from_pretrained("Neleac/timesformer-gpt2-video-captioning").to(device) # load video video_path = "never_gonna_give_you_up.mp4" container = av.open(video_path) # extract evenly spaced frames from video seg_len = container.streams.video[0].frames clip_len = model.config.encoder.num_frames indices = set(np.linspace(0, seg_len, num=clip_len, endpoint=False).astype(np.int64)) frames = [] container.seek(0) for i, frame in enumerate(container.decode(video=0)): if i in indices: frames.append(frame.to_ndarray(format="rgb24")) # generate caption gen_kwargs = { "min_length": 10, "max_length": 20, "num_beams": 8, } pixel_values = image_processor(frames, return_tensors="pt").pixel_values.to(device) tokens = model.generate(pixel_values, **gen_kwargs) caption = tokenizer.batch_decode(tokens, skip_special_tokens=True)[0] print(caption) # A man and a woman are dancing on a stage in front of a mirror. ``` #### Author Information: 👾 [Discord](https://discordapp.com/users/297770280863137802) \ 🐙 [GitHub](https://github.com/Neleac) \ 🤝 [LinkedIn](https://www.linkedin.com/in/caelenw/)