Commit
·
9b19bbf
1
Parent(s):
fbb3551
Training in progress, step 500
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- added_tokens.json +1 -0
- config.json +107 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +39 -0
- run_speech_recognition_ctc.py +807 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
- wandb/debug-internal.log +1 -0
- wandb/debug.log +1 -0
- wandb/latest-run +1 -0
- wandb/run-20220819_142520-3s4zhm8g/files/config.yaml +0 -0
- wandb/run-20220819_142520-3s4zhm8g/files/output.log +1331 -0
- wandb/run-20220819_142520-3s4zhm8g/files/requirements.txt +77 -0
- wandb/run-20220819_142520-3s4zhm8g/files/wandb-metadata.json +62 -0
- wandb/run-20220819_142520-3s4zhm8g/files/wandb-summary.json +0 -0
- wandb/run-20220819_142520-3s4zhm8g/logs/debug-internal.log +0 -0
- wandb/run-20220819_142520-3s4zhm8g/logs/debug.log +27 -0
- wandb/run-20220819_142520-3s4zhm8g/run-3s4zhm8g.wandb +3 -0
.gitattributes
CHANGED
|
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.wandb filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
checkpoint-*/
|
added_tokens.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"<s>": 39, "</s>": 40}
|
config.json
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "chcaa/xls-r-300m-danish",
|
| 3 |
+
"activation_dropout": 0.055,
|
| 4 |
+
"adapter_kernel_size": 3,
|
| 5 |
+
"adapter_stride": 2,
|
| 6 |
+
"add_adapter": false,
|
| 7 |
+
"apply_spec_augment": true,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Wav2Vec2ForCTC"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.094,
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"classifier_proj_size": 256,
|
| 14 |
+
"codevector_dim": 768,
|
| 15 |
+
"contrastive_logits_temperature": 0.1,
|
| 16 |
+
"conv_bias": true,
|
| 17 |
+
"conv_dim": [
|
| 18 |
+
512,
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512
|
| 25 |
+
],
|
| 26 |
+
"conv_kernel": [
|
| 27 |
+
10,
|
| 28 |
+
3,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
2,
|
| 33 |
+
2
|
| 34 |
+
],
|
| 35 |
+
"conv_stride": [
|
| 36 |
+
5,
|
| 37 |
+
2,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2
|
| 43 |
+
],
|
| 44 |
+
"ctc_loss_reduction": "mean",
|
| 45 |
+
"ctc_zero_infinity": true,
|
| 46 |
+
"diversity_loss_weight": 0.1,
|
| 47 |
+
"do_stable_layer_norm": true,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_dropout": 0.0,
|
| 51 |
+
"feat_extract_norm": "layer",
|
| 52 |
+
"feat_proj_dropout": 0.04,
|
| 53 |
+
"feat_quantizer_dropout": 0.0,
|
| 54 |
+
"final_dropout": 0.0,
|
| 55 |
+
"hidden_act": "gelu",
|
| 56 |
+
"hidden_dropout": 0.047,
|
| 57 |
+
"hidden_size": 1024,
|
| 58 |
+
"initializer_range": 0.02,
|
| 59 |
+
"intermediate_size": 4096,
|
| 60 |
+
"layer_norm_eps": 1e-05,
|
| 61 |
+
"layerdrop": 0.041,
|
| 62 |
+
"mask_feature_length": 64,
|
| 63 |
+
"mask_feature_min_masks": 0,
|
| 64 |
+
"mask_feature_prob": 0.25,
|
| 65 |
+
"mask_time_length": 10,
|
| 66 |
+
"mask_time_min_masks": 2,
|
| 67 |
+
"mask_time_prob": 0.082,
|
| 68 |
+
"model_type": "wav2vec2",
|
| 69 |
+
"num_adapter_layers": 3,
|
| 70 |
+
"num_attention_heads": 16,
|
| 71 |
+
"num_codevector_groups": 2,
|
| 72 |
+
"num_codevectors_per_group": 320,
|
| 73 |
+
"num_conv_pos_embedding_groups": 16,
|
| 74 |
+
"num_conv_pos_embeddings": 128,
|
| 75 |
+
"num_feat_extract_layers": 7,
|
| 76 |
+
"num_hidden_layers": 24,
|
| 77 |
+
"num_negatives": 100,
|
| 78 |
+
"output_hidden_size": 1024,
|
| 79 |
+
"pad_token_id": 38,
|
| 80 |
+
"proj_codevector_dim": 768,
|
| 81 |
+
"tdnn_dilation": [
|
| 82 |
+
1,
|
| 83 |
+
2,
|
| 84 |
+
3,
|
| 85 |
+
1,
|
| 86 |
+
1
|
| 87 |
+
],
|
| 88 |
+
"tdnn_dim": [
|
| 89 |
+
512,
|
| 90 |
+
512,
|
| 91 |
+
512,
|
| 92 |
+
512,
|
| 93 |
+
1500
|
| 94 |
+
],
|
| 95 |
+
"tdnn_kernel": [
|
| 96 |
+
5,
|
| 97 |
+
3,
|
| 98 |
+
3,
|
| 99 |
+
1,
|
| 100 |
+
1
|
| 101 |
+
],
|
| 102 |
+
"torch_dtype": "float32",
|
| 103 |
+
"transformers_version": "4.18.0",
|
| 104 |
+
"use_weighted_layer_sum": false,
|
| 105 |
+
"vocab_size": 41,
|
| 106 |
+
"xvector_output_dim": 512
|
| 107 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0,
|
| 7 |
+
"return_attention_mask": true,
|
| 8 |
+
"sampling_rate": 16000
|
| 9 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1b90575b8c796f3aa86f20010ba9a16f4ff7a4808dcb6d22de64a811f1718c9
|
| 3 |
+
size 1262066801
|
run.sh
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WANDB_ENTITY=NbAiLab WANDB_PROJECT=wav2vec2 python run_speech_recognition_ctc.py \
|
| 2 |
+
--model_name_or_path="chcaa/xls-r-300m-danish" \
|
| 3 |
+
--hub_model_id="NbAiLab/wav2vec2-large-danish-npsc-nst" \
|
| 4 |
+
--output_dir="./" \
|
| 5 |
+
--overwrite_output_dir \
|
| 6 |
+
--num_train_epochs="15" \
|
| 7 |
+
--per_device_train_batch_size="16" \
|
| 8 |
+
--per_device_eval_batch_size="16" \
|
| 9 |
+
--gradient_accumulation_steps="2" \
|
| 10 |
+
--learning_rate="1e-4" \
|
| 11 |
+
--warmup_steps="2000" \
|
| 12 |
+
--length_column_name="input_length" \
|
| 13 |
+
--evaluation_strategy="steps" \
|
| 14 |
+
--text_column_name="text" \
|
| 15 |
+
--save_steps="500" \
|
| 16 |
+
--eval_steps="500" \
|
| 17 |
+
--logging_steps="100" \
|
| 18 |
+
--layerdrop="0.041" \
|
| 19 |
+
--attention_dropout="0.094" \
|
| 20 |
+
--activation_dropout="0.055" \
|
| 21 |
+
--hidden_dropout="0.047" \
|
| 22 |
+
--save_total_limit="3" \
|
| 23 |
+
--freeze_feature_encoder \
|
| 24 |
+
--feat_proj_dropout="0.04" \
|
| 25 |
+
--mask_time_prob="0.082" \
|
| 26 |
+
--mask_time_length="10" \
|
| 27 |
+
--mask_feature_prob="0.25" \
|
| 28 |
+
--mask_feature_length="64" \
|
| 29 |
+
--gradient_checkpointing \
|
| 30 |
+
--min_duration_in_seconds="0.5" \
|
| 31 |
+
--max_duration_in_seconds="20.0" \
|
| 32 |
+
--use_auth_token \
|
| 33 |
+
--seed="42" \
|
| 34 |
+
--fp16 \
|
| 35 |
+
--group_by_length \
|
| 36 |
+
--do_train --do_eval \
|
| 37 |
+
--push_to_hub \
|
| 38 |
+
--preprocessing_num_workers="32" \
|
| 39 |
+
--ctc_zero_infinity
|
run_speech_recognition_ctc.py
ADDED
|
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
|
| 16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
| 17 |
+
|
| 18 |
+
import functools
|
| 19 |
+
import json
|
| 20 |
+
import logging
|
| 21 |
+
import os
|
| 22 |
+
import re
|
| 23 |
+
import sys
|
| 24 |
+
import warnings
|
| 25 |
+
from dataclasses import dataclass, field
|
| 26 |
+
from typing import Dict, List, Optional, Union
|
| 27 |
+
|
| 28 |
+
import datasets
|
| 29 |
+
import numpy as np
|
| 30 |
+
import torch
|
| 31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
| 32 |
+
|
| 33 |
+
import transformers
|
| 34 |
+
from transformers import (
|
| 35 |
+
AutoConfig,
|
| 36 |
+
AutoFeatureExtractor,
|
| 37 |
+
AutoModelForCTC,
|
| 38 |
+
AutoProcessor,
|
| 39 |
+
AutoTokenizer,
|
| 40 |
+
HfArgumentParser,
|
| 41 |
+
Trainer,
|
| 42 |
+
TrainingArguments,
|
| 43 |
+
Wav2Vec2Processor,
|
| 44 |
+
set_seed,
|
| 45 |
+
)
|
| 46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
| 47 |
+
from transformers.utils import check_min_version
|
| 48 |
+
from transformers.utils.versions import require_version
|
| 49 |
+
|
| 50 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
| 51 |
+
check_min_version("4.16.0.dev0")
|
| 52 |
+
|
| 53 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
| 54 |
+
|
| 55 |
+
logger = logging.getLogger(__name__)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def list_field(default=None, metadata=None):
|
| 59 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class ModelArguments:
|
| 64 |
+
"""
|
| 65 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
model_name_or_path: str = field(
|
| 69 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
| 70 |
+
)
|
| 71 |
+
tokenizer_name_or_path: Optional[str] = field(
|
| 72 |
+
default=None,
|
| 73 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
| 74 |
+
)
|
| 75 |
+
cache_dir: Optional[str] = field(
|
| 76 |
+
default=None,
|
| 77 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
| 78 |
+
)
|
| 79 |
+
freeze_feature_encoder: bool = field(
|
| 80 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
| 81 |
+
)
|
| 82 |
+
attention_dropout: float = field(
|
| 83 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
| 84 |
+
)
|
| 85 |
+
activation_dropout: float = field(
|
| 86 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
| 87 |
+
)
|
| 88 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
| 89 |
+
hidden_dropout: float = field(
|
| 90 |
+
default=0.0,
|
| 91 |
+
metadata={
|
| 92 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
| 93 |
+
},
|
| 94 |
+
)
|
| 95 |
+
final_dropout: float = field(
|
| 96 |
+
default=0.0,
|
| 97 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
| 98 |
+
)
|
| 99 |
+
mask_time_prob: float = field(
|
| 100 |
+
default=0.05,
|
| 101 |
+
metadata={
|
| 102 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
| 103 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
| 104 |
+
"vectors will be masked along the time axis."
|
| 105 |
+
},
|
| 106 |
+
)
|
| 107 |
+
mask_time_length: int = field(
|
| 108 |
+
default=10,
|
| 109 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
| 110 |
+
)
|
| 111 |
+
mask_feature_prob: float = field(
|
| 112 |
+
default=0.0,
|
| 113 |
+
metadata={
|
| 114 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
| 115 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
| 116 |
+
},
|
| 117 |
+
)
|
| 118 |
+
mask_feature_length: int = field(
|
| 119 |
+
default=10,
|
| 120 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
| 121 |
+
)
|
| 122 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
| 123 |
+
ctc_loss_reduction: Optional[str] = field(
|
| 124 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
| 125 |
+
)
|
| 126 |
+
ctc_zero_infinity: Optional[bool] = field(
|
| 127 |
+
default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."}
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@dataclass
|
| 132 |
+
class DataTrainingArguments:
|
| 133 |
+
"""
|
| 134 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 135 |
+
|
| 136 |
+
Using `HfArgumentParser` we can turn this class
|
| 137 |
+
into argparse arguments to be able to specify them on
|
| 138 |
+
the command line.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
# dataset_name: str = field(
|
| 142 |
+
# metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 143 |
+
# )
|
| 144 |
+
# dataset_config_name: str = field(
|
| 145 |
+
# default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 146 |
+
# )
|
| 147 |
+
train_split_name: str = field(
|
| 148 |
+
default="train",
|
| 149 |
+
metadata={
|
| 150 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
| 151 |
+
},
|
| 152 |
+
)
|
| 153 |
+
eval_split_name: str = field(
|
| 154 |
+
default="test",
|
| 155 |
+
metadata={
|
| 156 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
| 157 |
+
},
|
| 158 |
+
)
|
| 159 |
+
audio_column_name: str = field(
|
| 160 |
+
default="audio",
|
| 161 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
| 162 |
+
)
|
| 163 |
+
text_column_name: str = field(
|
| 164 |
+
default="text",
|
| 165 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
| 166 |
+
)
|
| 167 |
+
overwrite_cache: bool = field(
|
| 168 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
| 169 |
+
)
|
| 170 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 171 |
+
default=None,
|
| 172 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 173 |
+
)
|
| 174 |
+
max_train_samples: Optional[int] = field(
|
| 175 |
+
default=None,
|
| 176 |
+
metadata={
|
| 177 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 178 |
+
"value if set."
|
| 179 |
+
},
|
| 180 |
+
)
|
| 181 |
+
max_eval_samples: Optional[int] = field(
|
| 182 |
+
default=None,
|
| 183 |
+
metadata={
|
| 184 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
| 185 |
+
"value if set."
|
| 186 |
+
},
|
| 187 |
+
)
|
| 188 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
| 189 |
+
default=None,
|
| 190 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
| 191 |
+
)
|
| 192 |
+
eval_metrics: List[str] = list_field(
|
| 193 |
+
default=["wer"],
|
| 194 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
| 195 |
+
)
|
| 196 |
+
max_duration_in_seconds: float = field(
|
| 197 |
+
default=20.0,
|
| 198 |
+
metadata={
|
| 199 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
| 200 |
+
},
|
| 201 |
+
)
|
| 202 |
+
min_duration_in_seconds: float = field(
|
| 203 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
| 204 |
+
)
|
| 205 |
+
preprocessing_only: bool = field(
|
| 206 |
+
default=False,
|
| 207 |
+
metadata={
|
| 208 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
| 209 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
| 210 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
| 211 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
| 212 |
+
},
|
| 213 |
+
)
|
| 214 |
+
use_auth_token: bool = field(
|
| 215 |
+
default=False,
|
| 216 |
+
metadata={
|
| 217 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
| 218 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
| 219 |
+
},
|
| 220 |
+
)
|
| 221 |
+
unk_token: str = field(
|
| 222 |
+
default="[UNK]",
|
| 223 |
+
metadata={"help": "The unk token for the tokenizer"},
|
| 224 |
+
)
|
| 225 |
+
pad_token: str = field(
|
| 226 |
+
default="[PAD]",
|
| 227 |
+
metadata={"help": "The padding token for the tokenizer"},
|
| 228 |
+
)
|
| 229 |
+
word_delimiter_token: str = field(
|
| 230 |
+
default="|",
|
| 231 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
| 232 |
+
)
|
| 233 |
+
phoneme_language: Optional[str] = field(
|
| 234 |
+
default=None,
|
| 235 |
+
metadata={
|
| 236 |
+
"help": "The target language that should be used be"
|
| 237 |
+
" passed to the tokenizer for tokenization. Note that"
|
| 238 |
+
" this is only relevant if the model classifies the"
|
| 239 |
+
" input audio to a sequence of phoneme sequences."
|
| 240 |
+
},
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@dataclass
|
| 245 |
+
class DataCollatorCTCWithPadding:
|
| 246 |
+
"""
|
| 247 |
+
Data collator that will dynamically pad the inputs received.
|
| 248 |
+
Args:
|
| 249 |
+
processor (:class:`~transformers.AutoProcessor`)
|
| 250 |
+
The processor used for proccessing the data.
|
| 251 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 252 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
| 253 |
+
among:
|
| 254 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 255 |
+
sequence if provided).
|
| 256 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 257 |
+
maximum acceptable input length for the model if that argument is not provided.
|
| 258 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 259 |
+
different lengths).
|
| 260 |
+
max_length (:obj:`int`, `optional`):
|
| 261 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
| 262 |
+
max_length_labels (:obj:`int`, `optional`):
|
| 263 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
| 264 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 265 |
+
If set will pad the sequence to a multiple of the provided value.
|
| 266 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
| 267 |
+
7.5 (Volta).
|
| 268 |
+
"""
|
| 269 |
+
|
| 270 |
+
processor: AutoProcessor
|
| 271 |
+
padding: Union[bool, str] = "longest"
|
| 272 |
+
pad_to_multiple_of: Optional[int] = None
|
| 273 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
| 274 |
+
|
| 275 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
| 276 |
+
# split inputs and labels since they have to be of different lenghts and need
|
| 277 |
+
# different padding methods
|
| 278 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
| 279 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
| 280 |
+
|
| 281 |
+
batch = self.processor.pad(
|
| 282 |
+
input_features,
|
| 283 |
+
padding=self.padding,
|
| 284 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 285 |
+
return_tensors="pt",
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
with self.processor.as_target_processor():
|
| 289 |
+
labels_batch = self.processor.pad(
|
| 290 |
+
label_features,
|
| 291 |
+
padding=self.padding,
|
| 292 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
| 293 |
+
return_tensors="pt",
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# replace padding with -100 to ignore loss correctly
|
| 297 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
| 298 |
+
|
| 299 |
+
batch["labels"] = labels
|
| 300 |
+
|
| 301 |
+
return batch
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def create_vocabulary_from_data(
|
| 305 |
+
datasets: DatasetDict,
|
| 306 |
+
word_delimiter_token: Optional[str] = None,
|
| 307 |
+
unk_token: Optional[str] = None,
|
| 308 |
+
pad_token: Optional[str] = None,
|
| 309 |
+
):
|
| 310 |
+
# Given training and test labels create vocabulary
|
| 311 |
+
alphabet = set()
|
| 312 |
+
|
| 313 |
+
def extract_all_chars(batch):
|
| 314 |
+
all_text = " ".join(batch["target_text"])
|
| 315 |
+
alphabet.update(all_text)
|
| 316 |
+
|
| 317 |
+
datasets.map(
|
| 318 |
+
extract_all_chars,
|
| 319 |
+
batched=True,
|
| 320 |
+
batch_size=-1,
|
| 321 |
+
keep_in_memory=True,
|
| 322 |
+
remove_columns=datasets["train"].column_names,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# # take union of all unique characters in each dataset
|
| 326 |
+
# vocab_set = functools.reduce(
|
| 327 |
+
# lambda vocab_1, vocab_2: {"vocab": list(set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]))}, vocabs.values()
|
| 328 |
+
# )["vocab"][0]
|
| 329 |
+
|
| 330 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(alphabet)))}
|
| 331 |
+
|
| 332 |
+
# replace white space with delimiter token
|
| 333 |
+
if word_delimiter_token is not None:
|
| 334 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
| 335 |
+
del vocab_dict[" "]
|
| 336 |
+
|
| 337 |
+
# add unk and pad token
|
| 338 |
+
if unk_token is not None:
|
| 339 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
| 340 |
+
|
| 341 |
+
if pad_token is not None:
|
| 342 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
| 343 |
+
|
| 344 |
+
return vocab_dict
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
def make_dataset(seed=42):
|
| 348 |
+
# Pre-processing dataset
|
| 349 |
+
import re
|
| 350 |
+
|
| 351 |
+
def map_nst(entry):
|
| 352 |
+
text = entry["text"].lower()
|
| 353 |
+
text = text.replace("(...Vær stille under dette opptaket...)", "")
|
| 354 |
+
text = re.sub('[áàâ]', 'a', text)
|
| 355 |
+
text = re.sub('[ä]', 'æ', text)
|
| 356 |
+
text = re.sub('[éèëê]', 'e', text)
|
| 357 |
+
text = re.sub('[íìïî]', 'i', text)
|
| 358 |
+
text = re.sub('[óòöô]', 'o', text)
|
| 359 |
+
text = re.sub('[ö]', 'ø', text)
|
| 360 |
+
text = re.sub('[ç]', 'c', text)
|
| 361 |
+
text = re.sub('[úùüû]', 'u', text)
|
| 362 |
+
# text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
|
| 363 |
+
text = re.sub('\s+', ' ', text)
|
| 364 |
+
return {"text": text}
|
| 365 |
+
|
| 366 |
+
def filter_nst(entry):
|
| 367 |
+
if not ((len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)):
|
| 368 |
+
return False # Too short
|
| 369 |
+
if re.match(entry["type"], "pIW|CA"):
|
| 370 |
+
return False # Spelling out words
|
| 371 |
+
return True
|
| 372 |
+
|
| 373 |
+
def filter_npsc(entry):
|
| 374 |
+
# False if there are digits in the text
|
| 375 |
+
if not ((len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)):
|
| 376 |
+
return False # Too short
|
| 377 |
+
if re.search("\d", entry["text"]):
|
| 378 |
+
return False
|
| 379 |
+
return True
|
| 380 |
+
|
| 381 |
+
def map_npsc(entry):
|
| 382 |
+
batch = {"text": entry["text"].lower()}
|
| 383 |
+
batch["text"] = re.sub('[áàâ]', 'a', batch["text"])
|
| 384 |
+
batch["text"] = re.sub('[ä]', 'æ', batch["text"])
|
| 385 |
+
batch["text"] = re.sub('[éèëê]', 'e', batch["text"])
|
| 386 |
+
batch["text"] = re.sub('[íìïî]', 'i', batch["text"])
|
| 387 |
+
batch["text"] = re.sub('[óòöô]', 'o', batch["text"])
|
| 388 |
+
batch["text"] = re.sub('[ö]', 'ø', batch["text"])
|
| 389 |
+
batch["text"] = re.sub('[ç]', 'c', batch["text"])
|
| 390 |
+
batch["text"] = re.sub('[úùüû]', 'u', batch["text"])
|
| 391 |
+
batch["text"] = re.sub('\s', ' ', batch["text"])
|
| 392 |
+
batch["text"] = re.sub('<ee>', 'eee', batch["text"])
|
| 393 |
+
batch["text"] = re.sub('<qq>', 'qqq', batch["text"])
|
| 394 |
+
batch["text"] = re.sub('<mm>', 'mmm', batch["text"])
|
| 395 |
+
batch["text"] = re.sub('<inaudible>', 'xxx', batch["text"])
|
| 396 |
+
# batch["text"] = re.sub('<inaudible>', '?', batch["text"])
|
| 397 |
+
if "<" in batch["text"]:
|
| 398 |
+
raise ValueError(batch["text"])
|
| 399 |
+
return batch
|
| 400 |
+
|
| 401 |
+
nst = datasets.load_dataset("NbAiLab/NST", "no-close")
|
| 402 |
+
npsc = datasets.load_dataset("NbAiLab/NPSC", "16K_mp3")
|
| 403 |
+
# TODO NST_hesitate
|
| 404 |
+
|
| 405 |
+
split = len(npsc["train"]) / (len(npsc["train"]) + len(npsc["validation"])) # Use same train/val ratio as NPSC
|
| 406 |
+
nst_train = nst["train"].train_test_split(train_size=split, seed=seed)
|
| 407 |
+
nst["train"] = nst_train["train"]
|
| 408 |
+
nst["validation"] = nst_train["test"]
|
| 409 |
+
|
| 410 |
+
nst = nst.filter(filter_nst).map(map_nst).shuffle(seed=seed)
|
| 411 |
+
npsc = npsc.filter(filter_npsc).map(map_npsc).shuffle(seed=seed)
|
| 412 |
+
|
| 413 |
+
npsc_base = npsc.remove_columns([col for col in npsc["train"].column_names if col not in ["text", "audio"]])
|
| 414 |
+
nst_base = nst.remove_columns([col for col in nst["train"].column_names if col not in ["text", "audio"]])
|
| 415 |
+
|
| 416 |
+
combined = {}
|
| 417 |
+
for split in "train", "validation", "test":
|
| 418 |
+
probs = np.array([len(nst_base[split]), len(npsc_base[split])]) # Weight by number of examples
|
| 419 |
+
probs = (probs / probs.sum()).tolist()
|
| 420 |
+
comb = datasets.interleave_datasets([nst_base[split], npsc_base[split]], probabilities=probs, seed=seed)
|
| 421 |
+
combined[split] = comb
|
| 422 |
+
|
| 423 |
+
return datasets.DatasetDict(**combined)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
def main():
|
| 427 |
+
# See all possible arguments in src/transformers/training_args.py
|
| 428 |
+
# or by passing the --help flag to this script.
|
| 429 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
| 430 |
+
|
| 431 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
| 432 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 433 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 434 |
+
# let's parse it to get our arguments.
|
| 435 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
| 436 |
+
else:
|
| 437 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 438 |
+
|
| 439 |
+
# Detecting last checkpoint.
|
| 440 |
+
last_checkpoint = None
|
| 441 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
| 442 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
| 443 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
| 444 |
+
raise ValueError(
|
| 445 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
| 446 |
+
"Use --overwrite_output_dir to overcome."
|
| 447 |
+
)
|
| 448 |
+
elif last_checkpoint is not None:
|
| 449 |
+
logger.info(
|
| 450 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
| 451 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
# Setup logging
|
| 455 |
+
logging.basicConfig(
|
| 456 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 457 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 458 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 459 |
+
)
|
| 460 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
| 461 |
+
|
| 462 |
+
# Log on each process the small summary:
|
| 463 |
+
logger.warning(
|
| 464 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 465 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 466 |
+
)
|
| 467 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 468 |
+
if is_main_process(training_args.local_rank):
|
| 469 |
+
transformers.utils.logging.set_verbosity_info()
|
| 470 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
| 471 |
+
|
| 472 |
+
# Set seed before initializing model.
|
| 473 |
+
set_seed(training_args.seed)
|
| 474 |
+
|
| 475 |
+
# 1. First, let's load the dataset
|
| 476 |
+
raw_datasets = make_dataset(seed=training_args.seed)
|
| 477 |
+
|
| 478 |
+
if training_args.do_train:
|
| 479 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
| 480 |
+
raise ValueError(
|
| 481 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
| 482 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
| 483 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
| 487 |
+
raise ValueError(
|
| 488 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
| 489 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
| 490 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
if data_args.max_train_samples is not None:
|
| 494 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
| 495 |
+
|
| 496 |
+
if training_args.do_eval:
|
| 497 |
+
if data_args.max_eval_samples is not None:
|
| 498 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
| 499 |
+
|
| 500 |
+
# 2. We remove some special characters from the datasets
|
| 501 |
+
# that make training complicated and do not help in transcribing the speech
|
| 502 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
| 503 |
+
# that could be easily picked up by the model
|
| 504 |
+
# chars_to_ignore_regex = (
|
| 505 |
+
# f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
| 506 |
+
# )
|
| 507 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]'
|
| 508 |
+
|
| 509 |
+
text_column_name = data_args.text_column_name
|
| 510 |
+
|
| 511 |
+
def remove_special_characters(batch):
|
| 512 |
+
if chars_to_ignore_regex is not None:
|
| 513 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
| 514 |
+
else:
|
| 515 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
| 516 |
+
return batch
|
| 517 |
+
|
| 518 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
| 519 |
+
raw_datasets = raw_datasets.map(
|
| 520 |
+
remove_special_characters,
|
| 521 |
+
remove_columns=[text_column_name],
|
| 522 |
+
desc="remove special characters from datasets",
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
# save special tokens for tokenizer
|
| 526 |
+
word_delimiter_token = data_args.word_delimiter_token
|
| 527 |
+
unk_token = data_args.unk_token
|
| 528 |
+
pad_token = data_args.pad_token
|
| 529 |
+
|
| 530 |
+
# 3. Next, let's load the config as we might need it to create
|
| 531 |
+
# the tokenizer
|
| 532 |
+
# load config
|
| 533 |
+
config = AutoConfig.from_pretrained(
|
| 534 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
# 4. Next, if no tokenizer file is defined,
|
| 538 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
| 539 |
+
# the training and evaluation datasets
|
| 540 |
+
# We need to make sure that only first rank saves vocabulary
|
| 541 |
+
# make sure all processes wait until vocab is created
|
| 542 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
| 543 |
+
tokenizer_kwargs = {}
|
| 544 |
+
if tokenizer_name_or_path is None:
|
| 545 |
+
# save vocab in training output dir
|
| 546 |
+
tokenizer_name_or_path = training_args.output_dir
|
| 547 |
+
|
| 548 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
| 549 |
+
|
| 550 |
+
with training_args.main_process_first():
|
| 551 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
| 552 |
+
os.remove(vocab_file)
|
| 553 |
+
|
| 554 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
| 555 |
+
if not os.path.isfile(vocab_file):
|
| 556 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
| 557 |
+
vocab_dict = create_vocabulary_from_data(
|
| 558 |
+
raw_datasets,
|
| 559 |
+
word_delimiter_token=word_delimiter_token,
|
| 560 |
+
unk_token=unk_token,
|
| 561 |
+
pad_token=pad_token,
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
# save vocab dict to be loaded into tokenizer
|
| 565 |
+
with open(vocab_file, "w") as file:
|
| 566 |
+
json.dump(vocab_dict, file)
|
| 567 |
+
|
| 568 |
+
# if tokenizer has just been created
|
| 569 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
| 570 |
+
tokenizer_kwargs = {
|
| 571 |
+
"config": config if config.tokenizer_class is not None else None,
|
| 572 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
| 573 |
+
"unk_token": unk_token,
|
| 574 |
+
"pad_token": pad_token,
|
| 575 |
+
"word_delimiter_token": word_delimiter_token,
|
| 576 |
+
}
|
| 577 |
+
|
| 578 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
| 579 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
| 580 |
+
# one local process can concurrently download model & vocab.
|
| 581 |
+
|
| 582 |
+
# load feature_extractor and tokenizer
|
| 583 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 584 |
+
tokenizer_name_or_path,
|
| 585 |
+
use_auth_token=data_args.use_auth_token,
|
| 586 |
+
**tokenizer_kwargs,
|
| 587 |
+
)
|
| 588 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 589 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
# adapt config
|
| 593 |
+
config.update(
|
| 594 |
+
{
|
| 595 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
| 596 |
+
"attention_dropout": model_args.attention_dropout,
|
| 597 |
+
"hidden_dropout": model_args.hidden_dropout,
|
| 598 |
+
"final_dropout": model_args.final_dropout,
|
| 599 |
+
"mask_time_prob": model_args.mask_time_prob,
|
| 600 |
+
"mask_time_length": model_args.mask_time_length,
|
| 601 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
| 602 |
+
"mask_feature_length": model_args.mask_feature_length,
|
| 603 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
| 604 |
+
"layerdrop": model_args.layerdrop,
|
| 605 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
| 606 |
+
"ctc_zero_infinity": model_args.ctc_zero_infinity,
|
| 607 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 608 |
+
"vocab_size": len(tokenizer),
|
| 609 |
+
"activation_dropout": model_args.activation_dropout,
|
| 610 |
+
}
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
# create model
|
| 614 |
+
model = AutoModelForCTC.from_pretrained(
|
| 615 |
+
model_args.model_name_or_path,
|
| 616 |
+
cache_dir=model_args.cache_dir,
|
| 617 |
+
config=config,
|
| 618 |
+
use_auth_token=data_args.use_auth_token,
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
# freeze encoder
|
| 622 |
+
if model_args.freeze_feature_encoder:
|
| 623 |
+
model.freeze_feature_encoder()
|
| 624 |
+
|
| 625 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
| 626 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
| 627 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
| 628 |
+
# via the `feature_extractor`
|
| 629 |
+
|
| 630 |
+
# make sure that dataset decodes audio with correct sampling rate
|
| 631 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
| 632 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
| 633 |
+
raw_datasets = raw_datasets.cast_column(
|
| 634 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# derive max & min input length for sample rate & max duration
|
| 638 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
| 639 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
| 640 |
+
audio_column_name = data_args.audio_column_name
|
| 641 |
+
num_workers = data_args.preprocessing_num_workers
|
| 642 |
+
|
| 643 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
| 644 |
+
phoneme_language = data_args.phoneme_language
|
| 645 |
+
|
| 646 |
+
# Preprocessing the datasets.
|
| 647 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
| 648 |
+
def prepare_dataset(batch):
|
| 649 |
+
# load audio
|
| 650 |
+
sample = batch[audio_column_name]
|
| 651 |
+
|
| 652 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
| 653 |
+
batch["input_values"] = inputs.input_values[0]
|
| 654 |
+
batch["input_length"] = len(batch["input_values"])
|
| 655 |
+
|
| 656 |
+
# encode targets
|
| 657 |
+
additional_kwargs = {}
|
| 658 |
+
if phoneme_language is not None:
|
| 659 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
| 660 |
+
|
| 661 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
| 662 |
+
return batch
|
| 663 |
+
|
| 664 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
| 665 |
+
vectorized_datasets = raw_datasets.map(
|
| 666 |
+
prepare_dataset,
|
| 667 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
| 668 |
+
num_proc=num_workers,
|
| 669 |
+
desc="preprocess datasets",
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
def is_audio_in_length_range(length):
|
| 673 |
+
return length > min_input_length and length < max_input_length
|
| 674 |
+
|
| 675 |
+
# filter data that is shorter than min_input_length
|
| 676 |
+
vectorized_datasets = vectorized_datasets.filter(
|
| 677 |
+
is_audio_in_length_range,
|
| 678 |
+
num_proc=num_workers,
|
| 679 |
+
input_columns=["input_length"],
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
# 7. Next, we can prepare the training.
|
| 683 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
| 684 |
+
# instantiate a data collator and the trainer
|
| 685 |
+
|
| 686 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
| 687 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
| 688 |
+
|
| 689 |
+
# for large datasets it is advised to run the preprocessing on a
|
| 690 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
| 691 |
+
# be a timeout when running the script in distributed mode.
|
| 692 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
| 693 |
+
# cached dataset
|
| 694 |
+
if data_args.preprocessing_only:
|
| 695 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
| 696 |
+
return
|
| 697 |
+
|
| 698 |
+
def compute_metrics(pred):
|
| 699 |
+
pred_logits = pred.predictions
|
| 700 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
| 701 |
+
|
| 702 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
| 703 |
+
|
| 704 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
| 705 |
+
# we do not want to group tokens when computing the metrics
|
| 706 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
| 707 |
+
|
| 708 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
| 709 |
+
|
| 710 |
+
return metrics
|
| 711 |
+
|
| 712 |
+
# Now save everything to be able to create a single processor later
|
| 713 |
+
if is_main_process(training_args.local_rank):
|
| 714 |
+
# save feature extractor, tokenizer and config
|
| 715 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
| 716 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
| 717 |
+
config.save_pretrained(training_args.output_dir)
|
| 718 |
+
|
| 719 |
+
try:
|
| 720 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
| 721 |
+
except (OSError, KeyError):
|
| 722 |
+
warnings.warn(
|
| 723 |
+
"Loading a processor from a feature extractor config that does not"
|
| 724 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
| 725 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
| 726 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
| 727 |
+
FutureWarning,
|
| 728 |
+
)
|
| 729 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
| 730 |
+
|
| 731 |
+
# Instantiate custom data collator
|
| 732 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
| 733 |
+
|
| 734 |
+
# Initialize Trainer
|
| 735 |
+
trainer = Trainer(
|
| 736 |
+
model=model,
|
| 737 |
+
data_collator=data_collator,
|
| 738 |
+
args=training_args,
|
| 739 |
+
compute_metrics=compute_metrics,
|
| 740 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
| 741 |
+
eval_dataset=vectorized_datasets["validation"] if training_args.do_eval else None,
|
| 742 |
+
tokenizer=feature_extractor,
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
# 8. Finally, we can start training
|
| 746 |
+
|
| 747 |
+
# Training
|
| 748 |
+
if training_args.do_train:
|
| 749 |
+
|
| 750 |
+
# use last checkpoint if exist
|
| 751 |
+
if last_checkpoint is not None:
|
| 752 |
+
checkpoint = last_checkpoint
|
| 753 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
| 754 |
+
checkpoint = model_args.model_name_or_path
|
| 755 |
+
else:
|
| 756 |
+
checkpoint = None
|
| 757 |
+
|
| 758 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
| 759 |
+
trainer.save_model()
|
| 760 |
+
|
| 761 |
+
metrics = train_result.metrics
|
| 762 |
+
max_train_samples = (
|
| 763 |
+
data_args.max_train_samples
|
| 764 |
+
if data_args.max_train_samples is not None
|
| 765 |
+
else len(vectorized_datasets["train"])
|
| 766 |
+
)
|
| 767 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
| 768 |
+
|
| 769 |
+
trainer.log_metrics("train", metrics)
|
| 770 |
+
trainer.save_metrics("train", metrics)
|
| 771 |
+
trainer.save_state()
|
| 772 |
+
|
| 773 |
+
# Evaluation
|
| 774 |
+
results = {}
|
| 775 |
+
if training_args.do_eval:
|
| 776 |
+
logger.info("*** Evaluate ***")
|
| 777 |
+
metrics = trainer.evaluate()
|
| 778 |
+
max_eval_samples = (
|
| 779 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
| 780 |
+
)
|
| 781 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
| 782 |
+
|
| 783 |
+
trainer.log_metrics("eval", metrics)
|
| 784 |
+
trainer.save_metrics("eval", metrics)
|
| 785 |
+
|
| 786 |
+
# Write model card and (optionally) push to hub
|
| 787 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
| 788 |
+
kwargs = {
|
| 789 |
+
"finetuned_from": model_args.model_name_or_path,
|
| 790 |
+
"tasks": "speech-recognition",
|
| 791 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
| 792 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
| 793 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
| 794 |
+
}
|
| 795 |
+
if "common_voice" in data_args.dataset_name:
|
| 796 |
+
kwargs["language"] = config_name
|
| 797 |
+
|
| 798 |
+
if training_args.push_to_hub:
|
| 799 |
+
trainer.push_to_hub(**kwargs)
|
| 800 |
+
else:
|
| 801 |
+
trainer.create_model_card(**kwargs)
|
| 802 |
+
|
| 803 |
+
return results
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
if __name__ == "__main__":
|
| 807 |
+
main()
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "replace_word_delimiter_char": " ", "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:871d12761c34d34a636889262bf1872352c2b2442764aa917c8b73fdf8b937e2
|
| 3 |
+
size 3055
|
vocab.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"(": 1, ")": 2, "0": 3, "3": 4, "7": 5, "8": 6, "9": 7, "a": 8, "b": 9, "c": 10, "d": 11, "e": 12, "f": 13, "g": 14, "h": 15, "i": 16, "j": 17, "k": 18, "l": 19, "m": 20, "n": 21, "o": 22, "p": 23, "q": 24, "r": 25, "s": 26, "t": 27, "u": 28, "v": 29, "w": 30, "x": 31, "y": 32, "z": 33, "å": 34, "æ": 35, "ø": 36, "|": 0, "[UNK]": 37, "[PAD]": 38}
|
wandb/debug-internal.log
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
run-20220819_142520-3s4zhm8g/logs/debug-internal.log
|
wandb/debug.log
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
run-20220819_142520-3s4zhm8g/logs/debug.log
|
wandb/latest-run
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
run-20220819_142520-3s4zhm8g
|
wandb/run-20220819_142520-3s4zhm8g/files/config.yaml
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
wandb/run-20220819_142520-3s4zhm8g/files/output.log
ADDED
|
@@ -0,0 +1,1331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
0%| | 99/142305 [03:04<28:43:15, 1.38it/s]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
0%|▏ | 200/142305 [06:11<25:14:40, 1.56it/s]
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
0%|▎ | 300/142305 [09:15<26:01:05, 1.52it/s]
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
0%|▎ | 400/142305 [12:22<25:34:27, 1.54it/s]
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
0%|▍ | 500/142305 [15:27<27:49:29, 1.42it/s]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.
|
| 384 |
+
***** Running Evaluation *****
|
| 385 |
+
Num examples = 40498
|
| 386 |
+
Batch size = 16
|
| 387 |
+
{'loss': 3.0474, 'learning_rate': 2.47e-05, 'epoch': 0.05}
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
|
| 817 |
+
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
|
| 868 |
+
|
| 869 |
+
|
| 870 |
+
|
| 871 |
+
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
|
| 895 |
+
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
|
| 900 |
+
|
| 901 |
+
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
|
| 935 |
+
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
|
| 972 |
+
|
| 973 |
+
|
| 974 |
+
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
|
| 981 |
+
|
| 982 |
+
|
| 983 |
+
|
| 984 |
+
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
|
| 991 |
+
|
| 992 |
+
|
| 993 |
+
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
|
| 997 |
+
|
| 998 |
+
|
| 999 |
+
|
| 1000 |
+
|
| 1001 |
+
|
| 1002 |
+
|
| 1003 |
+
|
| 1004 |
+
|
| 1005 |
+
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
|
| 1014 |
+
|
| 1015 |
+
|
| 1016 |
+
|
| 1017 |
+
|
| 1018 |
+
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
|
| 1030 |
+
|
| 1031 |
+
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
|
| 1035 |
+
|
| 1036 |
+
|
| 1037 |
+
|
| 1038 |
+
|
| 1039 |
+
|
| 1040 |
+
|
| 1041 |
+
|
| 1042 |
+
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
|
| 1049 |
+
|
| 1050 |
+
|
| 1051 |
+
|
| 1052 |
+
|
| 1053 |
+
|
| 1054 |
+
|
| 1055 |
+
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
|
| 1059 |
+
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
|
| 1069 |
+
|
| 1070 |
+
|
| 1071 |
+
|
| 1072 |
+
|
| 1073 |
+
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
|
| 1082 |
+
|
| 1083 |
+
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
|
| 1087 |
+
|
| 1088 |
+
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
|
| 1095 |
+
|
| 1096 |
+
|
| 1097 |
+
|
| 1098 |
+
|
| 1099 |
+
|
| 1100 |
+
|
| 1101 |
+
|
| 1102 |
+
|
| 1103 |
+
|
| 1104 |
+
|
| 1105 |
+
|
| 1106 |
+
|
| 1107 |
+
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
|
| 1111 |
+
|
| 1112 |
+
|
| 1113 |
+
|
| 1114 |
+
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
|
| 1118 |
+
|
| 1119 |
+
|
| 1120 |
+
|
| 1121 |
+
|
| 1122 |
+
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
|
| 1129 |
+
|
| 1130 |
+
|
| 1131 |
+
|
| 1132 |
+
|
| 1133 |
+
|
| 1134 |
+
|
| 1135 |
+
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
|
| 1139 |
+
|
| 1140 |
+
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
|
| 1144 |
+
|
| 1145 |
+
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
|
| 1149 |
+
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
+
|
| 1153 |
+
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
|
| 1157 |
+
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
|
| 1161 |
+
|
| 1162 |
+
|
| 1163 |
+
|
| 1164 |
+
|
| 1165 |
+
|
| 1166 |
+
|
| 1167 |
+
|
| 1168 |
+
|
| 1169 |
+
|
| 1170 |
+
|
| 1171 |
+
|
| 1172 |
+
|
| 1173 |
+
|
| 1174 |
+
|
| 1175 |
+
|
| 1176 |
+
|
| 1177 |
+
|
| 1178 |
+
|
| 1179 |
+
|
| 1180 |
+
|
| 1181 |
+
|
| 1182 |
+
|
| 1183 |
+
|
| 1184 |
+
|
| 1185 |
+
|
| 1186 |
+
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
|
| 1190 |
+
|
| 1191 |
+
|
| 1192 |
+
|
| 1193 |
+
|
| 1194 |
+
|
| 1195 |
+
|
| 1196 |
+
|
| 1197 |
+
|
| 1198 |
+
|
| 1199 |
+
|
| 1200 |
+
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
|
| 1204 |
+
|
| 1205 |
+
|
| 1206 |
+
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
|
| 1210 |
+
|
| 1211 |
+
|
| 1212 |
+
|
| 1213 |
+
|
| 1214 |
+
|
| 1215 |
+
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
|
| 1219 |
+
|
| 1220 |
+
|
| 1221 |
+
|
| 1222 |
+
|
| 1223 |
+
|
| 1224 |
+
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
|
| 1228 |
+
|
| 1229 |
+
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
|
| 1236 |
+
|
| 1237 |
+
|
| 1238 |
+
|
| 1239 |
+
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
|
| 1244 |
+
|
| 1245 |
+
|
| 1246 |
+
|
| 1247 |
+
|
| 1248 |
+
|
| 1249 |
+
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
|
| 1253 |
+
|
| 1254 |
+
|
| 1255 |
+
|
| 1256 |
+
|
| 1257 |
+
|
| 1258 |
+
|
| 1259 |
+
|
| 1260 |
+
|
| 1261 |
+
|
| 1262 |
+
|
| 1263 |
+
|
| 1264 |
+
|
| 1265 |
+
|
| 1266 |
+
|
| 1267 |
+
|
| 1268 |
+
|
| 1269 |
+
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
|
| 1276 |
+
|
| 1277 |
+
|
| 1278 |
+
|
| 1279 |
+
|
| 1280 |
+
|
| 1281 |
+
|
| 1282 |
+
|
| 1283 |
+
|
| 1284 |
+
|
| 1285 |
+
|
| 1286 |
+
|
| 1287 |
+
|
| 1288 |
+
|
| 1289 |
+
|
| 1290 |
+
|
| 1291 |
+
|
| 1292 |
+
|
| 1293 |
+
|
| 1294 |
+
|
| 1295 |
+
|
| 1296 |
+
|
| 1297 |
+
|
| 1298 |
+
|
| 1299 |
+
|
| 1300 |
+
|
| 1301 |
+
|
| 1302 |
+
|
| 1303 |
+
|
| 1304 |
+
|
| 1305 |
+
|
| 1306 |
+
|
| 1307 |
+
|
| 1308 |
+
|
| 1309 |
+
|
| 1310 |
+
|
| 1311 |
+
|
| 1312 |
+
|
| 1313 |
+
|
| 1314 |
+
|
| 1315 |
+
|
| 1316 |
+
|
| 1317 |
+
|
| 1318 |
+
|
| 1319 |
+
|
| 1320 |
+
|
| 1321 |
+
|
| 1322 |
+
|
| 1323 |
+
|
| 1324 |
+
|
| 1325 |
+
|
| 1326 |
+
|
| 1327 |
+
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 2531/2532 [31:52<00:00, 1.42it/s]
|
| 1328 |
+
|
| 1329 |
+
Configuration saved in ./checkpoint-500/config.json
|
| 1330 |
+
Model weights saved in ./checkpoint-500/pytorch_model.bin
|
| 1331 |
+
Feature extractor saved in ./checkpoint-500/preprocessor_config.json
|
wandb/run-20220819_142520-3s4zhm8g/files/requirements.txt
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiohttp==3.8.1
|
| 2 |
+
aiosignal==1.2.0
|
| 3 |
+
appdirs==1.4.4
|
| 4 |
+
async-timeout==4.0.2
|
| 5 |
+
attrs==21.4.0
|
| 6 |
+
audioread==2.1.9
|
| 7 |
+
certifi==2021.10.8
|
| 8 |
+
cffi==1.15.0
|
| 9 |
+
charset-normalizer==2.0.12
|
| 10 |
+
click==8.1.2
|
| 11 |
+
datasets==2.1.0
|
| 12 |
+
decorator==5.1.1
|
| 13 |
+
dill==0.3.4
|
| 14 |
+
docker-pycreds==0.4.0
|
| 15 |
+
filelock==3.6.0
|
| 16 |
+
frozenlist==1.3.0
|
| 17 |
+
fsspec==2022.3.0
|
| 18 |
+
gitdb==4.0.9
|
| 19 |
+
gitpython==3.1.27
|
| 20 |
+
huggingface-hub==0.5.1
|
| 21 |
+
hypothesis==6.46.5
|
| 22 |
+
idna==3.3
|
| 23 |
+
jiwer==2.3.0
|
| 24 |
+
joblib==1.1.0
|
| 25 |
+
kenlm==0.0.0
|
| 26 |
+
librosa==0.9.1
|
| 27 |
+
llvmlite==0.38.0
|
| 28 |
+
multidict==6.0.2
|
| 29 |
+
multiprocess==0.70.12.2
|
| 30 |
+
numba==0.55.1
|
| 31 |
+
numpy==1.21.6
|
| 32 |
+
packaging==21.3
|
| 33 |
+
pandas==1.4.2
|
| 34 |
+
pathtools==0.1.2
|
| 35 |
+
pillow==9.1.0
|
| 36 |
+
pip==20.3.4
|
| 37 |
+
pkg-resources==0.0.0
|
| 38 |
+
pooch==1.6.0
|
| 39 |
+
promise==2.3
|
| 40 |
+
protobuf==3.20.1
|
| 41 |
+
psutil==5.9.0
|
| 42 |
+
pyarrow==7.0.0
|
| 43 |
+
pycparser==2.21
|
| 44 |
+
pyctcdecode==0.3.0
|
| 45 |
+
pygtrie==2.4.2
|
| 46 |
+
pyparsing==3.0.8
|
| 47 |
+
python-dateutil==2.8.2
|
| 48 |
+
python-levenshtein==0.12.2
|
| 49 |
+
pytz==2022.1
|
| 50 |
+
pyyaml==6.0
|
| 51 |
+
regex==2022.4.24
|
| 52 |
+
requests==2.27.1
|
| 53 |
+
resampy==0.2.2
|
| 54 |
+
responses==0.18.0
|
| 55 |
+
sacremoses==0.0.49
|
| 56 |
+
scikit-learn==1.0.2
|
| 57 |
+
scipy==1.8.0
|
| 58 |
+
sentry-sdk==1.5.10
|
| 59 |
+
setproctitle==1.2.3
|
| 60 |
+
setuptools==44.1.1
|
| 61 |
+
shortuuid==1.0.8
|
| 62 |
+
six==1.16.0
|
| 63 |
+
smmap==5.0.0
|
| 64 |
+
sortedcontainers==2.4.0
|
| 65 |
+
soundfile==0.10.3.post1
|
| 66 |
+
threadpoolctl==3.1.0
|
| 67 |
+
tokenizers==0.12.1
|
| 68 |
+
torch==1.11.0+cu113
|
| 69 |
+
torchaudio==0.11.0+cu113
|
| 70 |
+
torchvision==0.12.0+cu113
|
| 71 |
+
tqdm==4.64.0
|
| 72 |
+
transformers==4.18.0
|
| 73 |
+
typing-extensions==4.2.0
|
| 74 |
+
urllib3==1.26.9
|
| 75 |
+
wandb==0.12.15
|
| 76 |
+
xxhash==3.0.0
|
| 77 |
+
yarl==1.7.2
|
wandb/run-20220819_142520-3s4zhm8g/files/wandb-metadata.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"os": "Linux-5.13.0-40-generic-x86_64-with-glibc2.34",
|
| 3 |
+
"python": "3.9.7",
|
| 4 |
+
"heartbeatAt": "2022-08-19T12:25:22.044561",
|
| 5 |
+
"startedAt": "2022-08-19T12:25:20.942834",
|
| 6 |
+
"docker": null,
|
| 7 |
+
"cpu_count": 96,
|
| 8 |
+
"cuda": null,
|
| 9 |
+
"args": [
|
| 10 |
+
"--model_name_or_path=chcaa/xls-r-300m-danish",
|
| 11 |
+
"--hub_model_id=NbAiLab/wav2vec2-large-danish-npsc-nst",
|
| 12 |
+
"--output_dir=./",
|
| 13 |
+
"--overwrite_output_dir",
|
| 14 |
+
"--num_train_epochs=15",
|
| 15 |
+
"--per_device_train_batch_size=16",
|
| 16 |
+
"--per_device_eval_batch_size=16",
|
| 17 |
+
"--gradient_accumulation_steps=2",
|
| 18 |
+
"--learning_rate=1e-4",
|
| 19 |
+
"--warmup_steps=2000",
|
| 20 |
+
"--length_column_name=input_length",
|
| 21 |
+
"--evaluation_strategy=steps",
|
| 22 |
+
"--text_column_name=text",
|
| 23 |
+
"--save_steps=500",
|
| 24 |
+
"--eval_steps=500",
|
| 25 |
+
"--logging_steps=100",
|
| 26 |
+
"--layerdrop=0.041",
|
| 27 |
+
"--attention_dropout=0.094",
|
| 28 |
+
"--activation_dropout=0.055",
|
| 29 |
+
"--hidden_dropout=0.047",
|
| 30 |
+
"--save_total_limit=3",
|
| 31 |
+
"--freeze_feature_encoder",
|
| 32 |
+
"--feat_proj_dropout=0.04",
|
| 33 |
+
"--mask_time_prob=0.082",
|
| 34 |
+
"--mask_time_length=10",
|
| 35 |
+
"--mask_feature_prob=0.25",
|
| 36 |
+
"--mask_feature_length=64",
|
| 37 |
+
"--gradient_checkpointing",
|
| 38 |
+
"--min_duration_in_seconds=0.5",
|
| 39 |
+
"--max_duration_in_seconds=20.0",
|
| 40 |
+
"--use_auth_token",
|
| 41 |
+
"--seed=42",
|
| 42 |
+
"--fp16",
|
| 43 |
+
"--group_by_length",
|
| 44 |
+
"--do_train",
|
| 45 |
+
"--do_eval",
|
| 46 |
+
"--push_to_hub",
|
| 47 |
+
"--preprocessing_num_workers=32",
|
| 48 |
+
"--ctc_zero_infinity"
|
| 49 |
+
],
|
| 50 |
+
"state": "running",
|
| 51 |
+
"program": "/mnt/lv_ai_1_dante/ml/models/wav2vec2-large-danish-npsc-nst/run_speech_recognition_ctc.py",
|
| 52 |
+
"codePath": "run_speech_recognition_ctc.py",
|
| 53 |
+
"git": {
|
| 54 |
+
"remote": "https://huggingface.co/NbAiLab/wav2vec2-large-danish-npsc-nst",
|
| 55 |
+
"commit": "fbb3551c27bf8c7d5f481c9a1970b2246319a5f9"
|
| 56 |
+
},
|
| 57 |
+
"email": "[email protected]",
|
| 58 |
+
"root": "/mnt/lv_ai_1_dante/ml/models/wav2vec2-large-danish-npsc-nst",
|
| 59 |
+
"host": "dante",
|
| 60 |
+
"username": "rolvb",
|
| 61 |
+
"executable": "/mnt/lv_ai_1_dante/ml/rolvb/venv/bin/python"
|
| 62 |
+
}
|
wandb/run-20220819_142520-3s4zhm8g/files/wandb-summary.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
wandb/run-20220819_142520-3s4zhm8g/logs/debug-internal.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
wandb/run-20220819_142520-3s4zhm8g/logs/debug.log
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_setup.py:_flush():75] Loading settings from /home/rolvb/.config/wandb/settings
|
| 2 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_setup.py:_flush():75] Loading settings from /mnt/lv_ai_1_dante/ml/models/wav2vec2-large-danish-npsc-nst/wandb/settings
|
| 3 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_setup.py:_flush():75] Loading settings from environment variables: {'project': 'wav2vec2', 'entity': 'NbAiLab'}
|
| 4 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'run_speech_recognition_ctc.py', 'program': '/mnt/lv_ai_1_dante/ml/models/wav2vec2-large-danish-npsc-nst/run_speech_recognition_ctc.py'}
|
| 5 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_init.py:_log_setup():437] Logging user logs to /mnt/lv_ai_1_dante/ml/models/wav2vec2-large-danish-npsc-nst/wandb/run-20220819_142520-3s4zhm8g/logs/debug.log
|
| 6 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_init.py:_log_setup():438] Logging internal logs to /mnt/lv_ai_1_dante/ml/models/wav2vec2-large-danish-npsc-nst/wandb/run-20220819_142520-3s4zhm8g/logs/debug-internal.log
|
| 7 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_init.py:init():471] calling init triggers
|
| 8 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_init.py:init():474] wandb.init called with sweep_config: {}
|
| 9 |
+
config: {}
|
| 10 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [wandb_init.py:init():524] starting backend
|
| 11 |
+
2022-08-19 14:25:20,948 INFO MainThread:3283921 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
| 12 |
+
2022-08-19 14:25:21,006 INFO MainThread:3283921 [backend.py:ensure_launched():217] starting backend process...
|
| 13 |
+
2022-08-19 14:25:21,068 INFO MainThread:3283921 [backend.py:ensure_launched():222] started backend process with pid: 3284940
|
| 14 |
+
2022-08-19 14:25:21,070 INFO MainThread:3283921 [wandb_init.py:init():533] backend started and connected
|
| 15 |
+
2022-08-19 14:25:21,083 INFO MainThread:3283921 [wandb_init.py:init():597] updated telemetry
|
| 16 |
+
2022-08-19 14:25:21,231 INFO MainThread:3283921 [wandb_init.py:init():628] communicating run to backend with 30 second timeout
|
| 17 |
+
2022-08-19 14:25:21,887 INFO MainThread:3283921 [wandb_run.py:_on_init():1923] communicating current version
|
| 18 |
+
2022-08-19 14:25:22,029 INFO MainThread:3283921 [wandb_run.py:_on_init():1927] got version response upgrade_message: "wandb version 0.13.1 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
|
| 19 |
+
|
| 20 |
+
2022-08-19 14:25:22,029 INFO MainThread:3283921 [wandb_init.py:init():659] starting run threads in backend
|
| 21 |
+
2022-08-19 14:25:22,080 INFO MainThread:3283921 [wandb_run.py:_console_start():1897] atexit reg
|
| 22 |
+
2022-08-19 14:25:22,080 INFO MainThread:3283921 [wandb_run.py:_redirect():1770] redirect: SettingsConsole.REDIRECT
|
| 23 |
+
2022-08-19 14:25:22,081 INFO MainThread:3283921 [wandb_run.py:_redirect():1775] Redirecting console.
|
| 24 |
+
2022-08-19 14:25:22,083 INFO MainThread:3283921 [wandb_run.py:_redirect():1831] Redirects installed.
|
| 25 |
+
2022-08-19 14:25:22,084 INFO MainThread:3283921 [wandb_init.py:init():684] run started, returning control to user process
|
| 26 |
+
2022-08-19 14:25:22,106 INFO MainThread:3283921 [wandb_run.py:_config_callback():1131] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 38, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'chcaa/xls-r-300m-danish', 'transformers_version': '4.18.0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.047, 'attention_dropout': 0.094, 'activation_dropout': 0.055, 'feat_proj_dropout': 0.04, 'final_dropout': 0.0, 'layerdrop': 0.041, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 41, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.082, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.25, 'mask_feature_length': 64, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': True, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 2, 'eval_accumulation_steps': 'None', 'eval_delay': 0, 'learning_rate': 0.0001, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 15.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 2000, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Aug19_14-24-25_dante', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 3, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'data_seed': 'None', 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'NbAiLab/wav2vec2-large-danish-npsc-nst', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 16, 'eval_batch_size': 16}
|
| 27 |
+
2022-08-19 14:25:22,109 INFO MainThread:3283921 [wandb_watch.py:watch():47] Watching
|
wandb/run-20220819_142520-3s4zhm8g/run-3s4zhm8g.wandb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b23fc0329bacc37fd56bfda41a1e30d0257030fe9bc53fd31ca91eb1d6667ba
|
| 3 |
+
size 3969211
|