--- language: - hu tags: - text-classification license: mit metrics: - accuracy widget: - text: Jó reggelt! majd küldöm az élményhozókat :). --- # Hungarian Sentence-level Sentiment Analysis Model with XLM-RoBERTa For further models, scripts and details, see [our repository](https://github.com/nytud/sentiment-analysis) or [our demo site](https://juniper.nytud.hu/demo/nlp). - Pretrained model used: XLM-RoBERTa base - Finetuned on Hungarian Twitter Sentiment (HTS) Corpus - Labels: 0 (very negative), 1 (negative), 2 (neutral), 3 (positive), 4 (very positive) ## Limitations - max_seq_length = 128 ## Results | Model | HTS2 | HTS5 | | ------------- | ------------- | ------------- | | huBERT | 85.56 | **68.99** | | XLM-RoBERTa| 85.56 | 66.50 | ## Citation If you use this model, please cite the following paper: ``` @article {laki-yang-sentiment, author = {Laki, László János and Yang, Zijian Győző}, title = {Sentiment Analysis with Neural Models for Hungarian}, journal = {Acta Polytechnica Hungarica}, year = {2023}, publisher = {Obuda University}, volume = {20}, number = {5}, doi = {10.12700/APH.20.5.2023.5.8}, pages= {109--128}, url = {https://acta.uni-obuda.hu/Laki_Yang_134.pdf} } ```