--- language: - ko license: apache-2.0 library_name: adapter-transformers base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - MarkrAI/KOpen-HQ-Hermes-2.5-60K pipeline_tag: text-generation model-index: - name: naps-llama-3_1-8b-instruct-v0.4 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 73.44 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 27.83 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 17.22 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 3.91 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.96 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.5 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NAPS-ai/naps-llama-3_1-8b-instruct-v0.4 name: Open LLM Leaderboard --- Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. unsloth를 사용하여 meta-llama/Meta-Llama-3.1-8B-Instruct 모델에 LORA 파인튜닝을 완료했습니다. MarkrAI/KOpen-HQ-Hermes-2.5-60k 데이터를 학습시켰습니다. ## How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4") model = AutoModelForCausalLM.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4") ``` ## Chatbot ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6699b80354725cd6e0ae8e19/1J506GxR0eT6XnKsGVbye.png) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch tokenizer = AutoTokenizer.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4") model = AutoModelForCausalLM.from_pretrained("NAPS-ai/naps-llama-3.1-8b-instruct-v0.4") pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, device=0, ) def answering(question): messages = [ {"role": "system", "content": "당신은 항상 친절하게 대답하는 안내원입니다."}, {"role": "user", "content": question}, ] outputs = pipeline( messages, max_new_tokens=1024, pad_token_id = pipeline.tokenizer.eos_token_id ) return outputs[0]["generated_text"][2]['content'] while True: question = input("질문을 입력하세요 : ") if question == "종료": print("프로그램 종료") break answer = answering(question) print(f"AI의 답변: {answer}") ``` Contact : cgh@tnap.co.kr # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NAPS-ai__naps-llama-3_1-8b-instruct-v0.4) | Metric |Value| |-------------------|----:| |Avg. |27.31| |IFEval (0-Shot) |73.44| |BBH (3-Shot) |27.83| |MATH Lvl 5 (4-Shot)|17.22| |GPQA (0-shot) | 3.91| |MuSR (0-shot) |13.96| |MMLU-PRO (5-shot) |27.50|