--- license: apache-2.0 language: - ar pipeline_tag: text-classification library_name: transformers base_model: - Omartificial-Intelligence-Space/GATE-AraBert-v1 tags: - reranking - sentence-transformers --- # GATE-Reranker-V1 🚀✨ **NAMAA-space** releases **GATE-Reranker-V1**, a high-performance model fine-tuned to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦 This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query. ## Key Features 🔑 - **Optimized for Arabic**: Built on the highly performant [Omartificial-Intelligence-Space/GATE-AraBert-v1](https://huggingface.co/Omartificial-Intelligence-Space/GATE-AraBert-v1) with exclusivly rich Arabic data. - **Advanced Document Ranking**: Ranks results with precision, perfect for search engines, recommendation systems, and question-answering applications. - **State-of-the-Art Performance**: Achieves excellent performance compared to famous rerankers(See [Evaluation](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1#evaluation)), ensuring reliable relevance and precision. ## Example Use Cases 💼 - **Retrieval Augmented Generation**: Improve search result relevance for Arabic content. - **Content Recommendation**: Deliver top-tier Arabic content suggestions. - **Question Answering**: Boost answer retrieval quality in Arabic-focused systems. ## Usage # Within sentence-transformers The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('NAMAA-Space/GATE-Reranker-V1', max_length=512) Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟' Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض' Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات' scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)]) ``` ## Evaluation We evaluate our model on two different datasets using the metrics **MAP**, **MRR** and **NDCG@10**: The purpose of this evaluation is to highlight the performance of our model with regards to: Relevant/Irrelevant labels and positive/multiple negatives documents: Dataset 1: [NAMAA-Space/Ar-Reranking-Eval](https://huggingface.co/datasets/NAMAA-Space/Ar-Reranking-Eval) ![Plot](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1/resolve/main/Dataset1_Evaluation.jpg) Dataset 2: [NAMAA-Space/Arabic-Reranking-Triplet-5-Eval](https://huggingface.co/datasets/NAMAA-Space/Arabic-Reranking-Triplet-5-Eval) ![Plot](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1/resolve/main/Dataset2_Evaluation.jpg) As seen, The model performs extremly well in comparison to other famous rerankers. WIP: More comparisons and evaluation on arabic datasets.