##### ## Bloom2.5B Zen ## ##### Bloom (2.5 B) Scientific Model fine-tuned on Zen knowledge ##### ## Usage ## ##### from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MultiTrickFox/bloom-2b5_Zen") model = AutoModelForCausalLM.from_pretrained("MultiTrickFox/bloom-2b5_Zen") model.cuda() tokenizer.pad_token_id = tokenizer.eos_token_id generator = pipeline('text-generation', model=model, tokenizer=tokenizer) inp = [ """Today""", """Yesterday""" ] out = generator( inp.cuda(), do_sample=True, temperature=.6, typical_p=.7, #top_p=.9, repetition_penalty=1.2, max_new_tokens=666, max_time=60, # seconds ) for o in out: print(o[0]['generated_text'])