--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Muhsabrys/autotrain-data-xlmroblarge-pretweet co2_eq_emissions: emissions: 0.013614585185795386 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 51657122297 - CO2 Emissions (in grams): 0.0136 ## Validation Metrics - Loss: 0.426 - Accuracy: 0.828 - Macro F1: 0.826 - Micro F1: 0.828 - Weighted F1: 0.827 - Macro Precision: 0.827 - Micro Precision: 0.828 - Weighted Precision: 0.828 - Macro Recall: 0.825 - Micro Recall: 0.828 - Weighted Recall: 0.828 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Muhsabrys/autotrain-xlmroblarge-pretweet-51657122297 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Muhsabrys/autotrain-xlmroblarge-pretweet-51657122297", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Muhsabrys/autotrain-xlmroblarge-pretweet-51657122297", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```