Update handler.py
Browse files- handler.py +44 -50
handler.py
CHANGED
@@ -14,55 +14,49 @@ template = """{char_name}'s Persona: {char_persona}
|
|
14 |
class EndpointHandler():
|
15 |
|
16 |
def __init__(self, path=""):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
50 |
|
51 |
-
def __call__(self, data:
|
52 |
-
|
53 |
-
data
|
54 |
-
inputs (:obj: `str`)
|
55 |
-
date (:obj: `str`)
|
56 |
-
Return:
|
57 |
-
A :obj:`list` | `dict`: will be serialized and returned
|
58 |
-
"""
|
59 |
-
inputs = data.pop("inputs", data)
|
60 |
|
61 |
-
return self.llm_engine.predict(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
).split("\n",1)[0]
|
|
|
14 |
class EndpointHandler():
|
15 |
|
16 |
def __init__(self, path=""):
|
17 |
+
pass
|
18 |
+
# tokenizer = AutoTokenizer.from_pretrained(path)
|
19 |
+
# model = AutoModelForCausalLM.from_pretrained(path, load_in_8bit = True, device_map = "auto")
|
20 |
+
# local_llm = HuggingFacePipeline(
|
21 |
+
# pipeline = pipeline(
|
22 |
+
# "text-generation",
|
23 |
+
# model = model,
|
24 |
+
# tokenizer = tokenizer,
|
25 |
+
# max_length = 2048,
|
26 |
+
# temperature = 0.5,
|
27 |
+
# top_p = 0.9,
|
28 |
+
# top_k = 0,
|
29 |
+
# repetition_penalty = 1.1,
|
30 |
+
# pad_token_id = 50256,
|
31 |
+
# num_return_sequences = 1
|
32 |
+
# )
|
33 |
+
# )
|
34 |
+
# prompt_template = PromptTemplate(
|
35 |
+
# template = template,
|
36 |
+
# input_variables = [
|
37 |
+
# "user_input",
|
38 |
+
# "user_name",
|
39 |
+
# "char_name",
|
40 |
+
# "char_persona",
|
41 |
+
# "char_greeting",
|
42 |
+
# "chat_history"
|
43 |
+
# ],
|
44 |
+
# validate_template = True
|
45 |
+
# )
|
46 |
+
# self.llm_engine = LLMChain(
|
47 |
+
# llm = local_llm,
|
48 |
+
# prompt = prompt_template
|
49 |
+
# )
|
50 |
|
51 |
+
def __call__(self, data: Any) -> Any:
|
52 |
+
return data, type(data)
|
53 |
+
# inputs = data.pop("inputs", data)
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# return self.llm_engine.predict(
|
56 |
+
# user_input = inputs["user_input"],
|
57 |
+
# user_name = inputs["user_name"],
|
58 |
+
# char_name = inputs["char_name"],
|
59 |
+
# char_persona = inputs["char_persona"],
|
60 |
+
# char_greeting = inputs["char_greeting"],
|
61 |
+
# chat_history = inputs["chat_history"]
|
62 |
+
# ).split("\n",1)[0]
|