Commit
·
a6f8521
1
Parent(s):
2bd9862
Upload web-ui.py
Browse files
web-ui.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from insightface.app import FaceAnalysis
|
8 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
9 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
|
10 |
+
import argparse
|
11 |
+
import random
|
12 |
+
from insightface.utils import face_align
|
13 |
+
|
14 |
+
# Argument parser for command line options
|
15 |
+
parser = argparse.ArgumentParser()
|
16 |
+
parser.add_argument("--share", action="store_true", help="Enable Gradio share option")
|
17 |
+
parser.add_argument("--num_images", type=int, default=1, help="Number of images to generate")
|
18 |
+
parser.add_argument("--cache_limit", type=int, default=1, help="Limit for model cache")
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
# Add new model names here
|
22 |
+
static_model_names = [
|
23 |
+
"SG161222/Realistic_Vision_V6.0_B1_noVAE",
|
24 |
+
"stablediffusionapi/rev-animated-v122-eol",
|
25 |
+
"Lykon/DreamShaper",
|
26 |
+
"stablediffusionapi/toonyou",
|
27 |
+
"stablediffusionapi/real-cartoon-3d",
|
28 |
+
"KBlueLeaf/kohaku-v2.1",
|
29 |
+
"nitrosocke/Ghibli-Diffusion",
|
30 |
+
"Linaqruf/anything-v3.0",
|
31 |
+
"jinaai/flat-2d-animerge",
|
32 |
+
"stablediffusionapi/realcartoon3d",
|
33 |
+
"stablediffusionapi/disney-pixar-cartoon",
|
34 |
+
"stablediffusionapi/pastel-mix-stylized-anime",
|
35 |
+
"stablediffusionapi/anything-v5",
|
36 |
+
"SG161222/Realistic_Vision_V2.0",
|
37 |
+
"SG161222/Realistic_Vision_V4.0_noVAE",
|
38 |
+
"SG161222/Realistic_Vision_V5.1_noVAE",
|
39 |
+
r"C:\Users\King\Downloads\New folder\3D Animation Diffusion"
|
40 |
+
]
|
41 |
+
|
42 |
+
# Cache for loaded models
|
43 |
+
model_cache = {}
|
44 |
+
max_cache_size = args.cache_limit
|
45 |
+
|
46 |
+
# Function to load and cache model
|
47 |
+
def load_model(model_name):
|
48 |
+
if model_name in model_cache:
|
49 |
+
return model_cache[model_name]
|
50 |
+
|
51 |
+
# Limit cache size
|
52 |
+
if len(model_cache) >= max_cache_size:
|
53 |
+
model_cache.pop(next(iter(model_cache)))
|
54 |
+
|
55 |
+
device = "cuda"
|
56 |
+
noise_scheduler = DDIMScheduler(
|
57 |
+
num_train_timesteps=1000,
|
58 |
+
beta_start=0.00085,
|
59 |
+
beta_end=0.012,
|
60 |
+
beta_schedule="scaled_linear",
|
61 |
+
clip_sample=False,
|
62 |
+
set_alpha_to_one=False,
|
63 |
+
steps_offset=1,
|
64 |
+
)
|
65 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
66 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
67 |
+
|
68 |
+
# Load model based on the selected model name
|
69 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
70 |
+
model_name,
|
71 |
+
torch_dtype=torch.float16,
|
72 |
+
scheduler=noise_scheduler,
|
73 |
+
vae=vae,
|
74 |
+
feature_extractor=None,
|
75 |
+
safety_checker=None
|
76 |
+
).to(device)
|
77 |
+
|
78 |
+
image_encoder_path = "h94/IP-Adapter/models/image_encoder"
|
79 |
+
ip_ckpt = "adapters/ip-adapter-faceid-plusv2_sd15.bin"
|
80 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
|
81 |
+
|
82 |
+
model_cache[model_name] = ip_model
|
83 |
+
return ip_model
|
84 |
+
|
85 |
+
# Function to process image and generate output
|
86 |
+
def generate_image(input_image, positive_prompt, negative_prompt, width, height, model_name, num_inference_steps, seed, randomize_seed, num_images, batch_size, enable_shortcut, s_scale):
|
87 |
+
saved_images = []
|
88 |
+
|
89 |
+
# Load and prepare the model
|
90 |
+
ip_model = load_model(model_name)
|
91 |
+
|
92 |
+
# Convert input image to the format expected by the model
|
93 |
+
input_image = input_image.convert("RGB")
|
94 |
+
input_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
95 |
+
app = FaceAnalysis(
|
96 |
+
name="buffalo_l", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
|
97 |
+
)
|
98 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
99 |
+
faces = app.get(input_image)
|
100 |
+
if not faces:
|
101 |
+
raise ValueError("No faces found in the image.")
|
102 |
+
|
103 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
104 |
+
face_image = face_align.norm_crop(input_image, landmark=faces[0].kps, image_size=224)
|
105 |
+
|
106 |
+
for image_index in range(num_images):
|
107 |
+
if randomize_seed or image_index > 0:
|
108 |
+
seed = random.randint(0, 2**32 - 1)
|
109 |
+
|
110 |
+
# Generate the image with the new parameters
|
111 |
+
generated_images = ip_model.generate(
|
112 |
+
prompt=positive_prompt,
|
113 |
+
negative_prompt=negative_prompt,
|
114 |
+
faceid_embeds=faceid_embeds,
|
115 |
+
face_image=face_image,
|
116 |
+
num_samples=batch_size,
|
117 |
+
shortcut=enable_shortcut,
|
118 |
+
s_scale=s_scale,
|
119 |
+
width=width,
|
120 |
+
height=height,
|
121 |
+
num_inference_steps=num_inference_steps,
|
122 |
+
seed=seed,
|
123 |
+
)
|
124 |
+
|
125 |
+
# Save and prepare the generated images for display
|
126 |
+
outputs_dir = "outputs"
|
127 |
+
if not os.path.exists(outputs_dir):
|
128 |
+
os.makedirs(outputs_dir)
|
129 |
+
for i, img in enumerate(generated_images, start=1):
|
130 |
+
image_path = os.path.join(outputs_dir, f"generated_{len(os.listdir(outputs_dir)) + i}.png")
|
131 |
+
img.save(image_path)
|
132 |
+
saved_images.append(image_path)
|
133 |
+
|
134 |
+
return saved_images, f"Saved images: {', '.join(saved_images)}", seed
|
135 |
+
|
136 |
+
# Gradio interface, using the static list of models
|
137 |
+
with gr.Blocks() as demo:
|
138 |
+
gr.Markdown("Developed by SECourses - only distributed on https://www.patreon.com/posts/95759342")
|
139 |
+
with gr.Row():
|
140 |
+
input_image = gr.Image(type="pil")
|
141 |
+
generate_btn = gr.Button("Generate")
|
142 |
+
with gr.Row():
|
143 |
+
width = gr.Number(value=512, label="Width")
|
144 |
+
height = gr.Number(value=768, label="Height")
|
145 |
+
with gr.Row():
|
146 |
+
num_inference_steps = gr.Number(value=30, label="Number of Inference Steps", step=1, minimum=10, maximum=100)
|
147 |
+
seed = gr.Number(value=2023, label="Seed")
|
148 |
+
randomize_seed = gr.Checkbox(value=True, label="Randomize Seed")
|
149 |
+
with gr.Row():
|
150 |
+
num_images = gr.Number(value=args.num_images, label="Number of Images to Generate", step=1, minimum=1)
|
151 |
+
batch_size = gr.Number(value=1, label="Batch Size", step=1)
|
152 |
+
with gr.Row():
|
153 |
+
enable_shortcut = gr.Checkbox(value=True, label="Enable Shortcut")
|
154 |
+
s_scale = gr.Number(value=1.0, label="Scale Factor (s_scale)", step=0.1, minimum=0.5, maximum=4.0)
|
155 |
+
with gr.Row():
|
156 |
+
positive_prompt = gr.Textbox(label="Positive Prompt")
|
157 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
158 |
+
with gr.Row():
|
159 |
+
model_selector = gr.Dropdown(label="Select Model", choices=static_model_names, value=static_model_names[0])
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
output_gallery = gr.Gallery(label="Generated Images")
|
163 |
+
output_text = gr.Textbox(label="Output Info")
|
164 |
+
display_seed = gr.Textbox(label="Used Seed", interactive=False)
|
165 |
+
|
166 |
+
generate_btn.click(
|
167 |
+
generate_image,
|
168 |
+
inputs=[input_image, positive_prompt, negative_prompt, width, height, model_selector, num_inference_steps, seed, randomize_seed, num_images, batch_size, enable_shortcut, s_scale],
|
169 |
+
outputs=[output_gallery, output_text, display_seed],
|
170 |
+
)
|
171 |
+
|
172 |
+
demo.launch(share=args.share, inbrowser=True)
|