--- library_name: transformers language: - multilingual license: apache-2.0 base_model: openai/whisper-Large tags: - generated_from_trainer datasets: - AhmedBadawy11/high_quality_ds metrics: - wer model-index: - name: Whisper Large UAE results: [] --- # Whisper Large UAE This model is a fine-tuned version of [openai/whisper-Large](https://huggingface.co/openai/whisper-Large) on the high_quality_ds dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 0.0261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0024 | 15.8730 | 1000 | 0.0048 | 0.1303 | | 0.0001 | 31.7460 | 2000 | 0.0001 | 0.0261 | | 0.0 | 47.6190 | 3000 | 0.0001 | 0.0261 | | 0.0 | 63.4921 | 4000 | 0.0000 | 0.0261 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0