--- license: llama2 base_model: epfl-llm/meditron-7b tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: meditron-7b-dpo-full-wo-kqa_golden-ep3 results: [] --- # meditron-7b-dpo-full-wo-kqa_golden-ep3 This model is a fine-tuned version of [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.4459 - Rewards/chosen: -0.4566 - Rewards/rejected: -1.4012 - Rewards/accuracies: 0.8068 - Rewards/margins: 0.9447 - Logps/rejected: -1444.6896 - Logps/chosen: -859.0582 - Logits/rejected: -0.9203 - Logits/chosen: -0.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5643 | 0.5 | 100 | 0.5890 | -0.0484 | -0.2951 | 0.7727 | 0.2467 | -1334.0771 | -818.2397 | -0.8645 | -0.6995 | | 0.3959 | 1.0 | 200 | 0.4459 | -0.4566 | -1.4012 | 0.8068 | 0.9447 | -1444.6896 | -859.0582 | -0.9203 | -0.8310 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2