--- base_model: meta-llama/Llama-2-7b-hf tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: llama2-7b-dpo-full-wo-medication_qa-ep3 results: [] --- # llama2-7b-dpo-full-wo-medication_qa-ep3 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6486 - Rewards/chosen: 0.0485 - Rewards/rejected: -0.0716 - Rewards/accuracies: 0.7847 - Rewards/margins: 0.1201 - Logps/rejected: -1097.3336 - Logps/chosen: -485.8272 - Logits/rejected: -1.1127 - Logits/chosen: -0.0114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5991 | 0.7 | 100 | 0.6540 | 0.0513 | -0.0539 | 0.7778 | 0.1052 | -1095.5646 | -485.5474 | -1.1199 | -0.0017 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2