--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: cc-by-nc-sa-4.0 language: - jp --- # Uploaded model - **Developed by:** MikenekoDyn - **License:** CC-BY-NC-SA (ichikara-instruction datasetからの継承による) - **Finetuned from model :** llm-jp/llm-jp-3-13b # Sample Use ELYZA-tasks-100-TV.jsonlに使用する場合のサンプルコードです。 ```python HF_TOKEN = "your token" import torch max_new_tokens = 1024 new_model_id = "MikenekoDyn/llm-jp-13b-061206a" load_in_4bit = False load_in_8bit = not load_in_4bit do_sample=True repetition_penalty=1.05 temperature=0.7 top_p=0.95 ## ELYZA-tasks-100-TVの読み込み import json datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" ## Config設定 from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=load_in_4bit, load_in_8bit=load_in_8bit, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) # Load model model = AutoModelForCausalLM.from_pretrained( new_model_id+"_lora", quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(new_model_id+"_lora", trust_remote_code=True, token = HF_TOKEN) ## 推論実施 from tqdm import tqdm results = [] ii=0 for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答: """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( tokenized_input, max_new_tokens=max_new_tokens, do_sample=do_sample, repetition_penalty=repetition_penalty, temperature=temperature, top_p=top_p )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) if ii<3: print(output) results.append({"task_id": data["task_id"], "input": input, "output": output}) ii=ii+1 # jsonlで保存 import re save_model_name = re.sub(".*/", "", new_model_id) with open(f"{save_model_name}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` # Instruction Tuning 使用データセット - ichikara-instruction dataset - ELYZA-tasks-100 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)