--- library_name: transformers tags: - trl - sft license: apache-2.0 datasets: - Mike0307/alpaca-en-zhtw language: - zh pipeline_tag: text-generation base_model: - microsoft/Phi-3-mini-4k-instruct --- ## Download Model The base-model [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) currently relies on the latest dev-version transformers and torch.
Also, it needs *trust_remote_code=True* as an argument of the from_pretrained function. ``` pip install git+https://github.com/huggingface/transformers accelerate pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu ``` Additionally, LoRA adapter requires the peft package. ``` pip install peft ``` Now, let's start to download the adapter. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "Mike0307/Phi-3-mini-4k-instruct-chinese-lora" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="mps", # mps is for MacOS users torch_dtype=torch.float32, # try float16 if needed trust_remote_code=True, attn_implementation="eager", # without flash_attn ) tokenizer = AutoTokenizer.from_pretrained(model_id) ``` ## Inference Example ```python # M2 pro takes about 3 seconds in this example. input_text = "<|user|>將這五種動物分成兩組。\n老虎、鯊魚、大象、鯨魚、袋鼠 <|end|>\n<|assistant|>" inputs = tokenizer( input_text, return_tensors="pt" ).to(torch.device("mps")) # mps is for MacOS users outputs = model.generate( **inputs, temperature = 0.0, max_length = 500, do_sample = False ) generated_text = tokenizer.decode( outputs[0], skip_special_tokens=True ) print(generated_text) ``` ## Streaming Example ```python from transformers import TextStreamer streamer = TextStreamer(tokenizer) input_text = "<|user|>將這五種動物分成兩組。\n老虎、鯊魚、大象、鯨魚、袋鼠 <|end|>\n<|assistant|>" inputs = tokenizer( input_text, return_tensors="pt" ).to(torch.device("mps")) # Change mps if not MacOS outputs = model.generate( **inputs, temperature = 0.0, do_sample = False, streamer=streamer, max_length=500, ) generated_text = tokenizer.decode( outputs[0], skip_special_tokens=True ) ``` ## Example of RAG with Langchain [This reference](https://huggingface.co/Mike0307/text2vec-base-chinese-rag#example-of-langchain-rag) shows how to customize langchain llm with this phi-3 lora model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6414866f1cbd604c9217c7d0/RrBoHJINfrSWtCNkePs7g.png)