--- language: - zh license: apache-2.0 library_name: transformers tags: - trl - sft datasets: - Mike0307/alpaca-en-zhtw pipeline_tag: text-generation --- ## Download the model The base-model *microsoft/Phi-3-mini-4k-instruct* relies on development-version transformers: ```bash pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers ``` ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "Mike0307/Phi-3-mini-4k-instruct-chinese-lora" base_model = AutoModelForCausalLM.from_pretrained( model_path, device_map="mps", # FIX mps if not MacOS torch_dtype=torch.float32, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_path) ``` ## Example of inference ```python input_text = "<|user|>將這五種動物分成兩組。\n老虎、鯊魚、大象、鯨魚、袋鼠 <|end|>\n<|assistant|>" inputs = tokenizer(input_text, return_tensors="pt").to(torch.device("mps")) # FIX mps if not MacOS outputs = base_model.generate( **inputs, temperature = 0.0, max_length = 500, do_sample = False ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, predict_with_generate=True) print(generated_text) ```