--- base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align library_name: transformers metrics: - accuracy - precision - recall - f1 tags: - generated_from_trainer model-index: - name: dfm results: [] --- # dfm This model is a fine-tuned version of [KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align](https://huggingface.co/KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9421 - Precision: 0.9470 - Recall: 0.9421 - F1: 0.9422 - Loss: 0.5839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:| | No log | 0.9412 | 8 | 0.8711 | 0.8341 | 0.8711 | 0.8507 | 0.4719 | | No log | 2.0 | 17 | 0.9237 | 0.9242 | 0.9237 | 0.9217 | 0.3301 | | No log | 2.9412 | 25 | 0.9225 | 0.9301 | 0.9225 | 0.9232 | 0.3470 | | No log | 4.0 | 34 | 0.9317 | 0.9315 | 0.9317 | 0.9299 | 0.2004 | | No log | 4.9412 | 42 | 0.9379 | 0.9443 | 0.9379 | 0.9383 | 0.4529 | | No log | 6.0 | 51 | 0.9394 | 0.9454 | 0.9394 | 0.9399 | 0.4719 | | No log | 6.9412 | 59 | 0.9425 | 0.9458 | 0.9425 | 0.9419 | 0.4498 | | No log | 8.0 | 68 | 0.9421 | 0.9471 | 0.9421 | 0.9423 | 0.4921 | | No log | 8.9412 | 76 | 0.9440 | 0.9486 | 0.9440 | 0.9440 | 0.5242 | | No log | 10.0 | 85 | 0.9444 | 0.9488 | 0.9444 | 0.9443 | 0.5476 | | No log | 10.9412 | 93 | 0.9421 | 0.9471 | 0.9421 | 0.9422 | 0.5733 | | No log | 12.0 | 102 | 0.9432 | 0.9479 | 0.9432 | 0.9433 | 0.5725 | | No log | 12.9412 | 110 | 0.9432 | 0.9478 | 0.9432 | 0.9432 | 0.5677 | | No log | 14.0 | 119 | 0.9432 | 0.9478 | 0.9432 | 0.9432 | 0.5714 | | No log | 14.9412 | 127 | 0.9425 | 0.9473 | 0.9425 | 0.9425 | 0.5802 | | No log | 16.0 | 136 | 0.9417 | 0.9468 | 0.9417 | 0.9418 | 0.5838 | | No log | 16.9412 | 144 | 0.9421 | 0.9470 | 0.9421 | 0.9422 | 0.5857 | | No log | 18.0 | 153 | 0.9421 | 0.9470 | 0.9421 | 0.9422 | 0.5840 | | No log | 18.8235 | 160 | 0.9421 | 0.9470 | 0.9421 | 0.9422 | 0.5839 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1