File size: 1,904 Bytes
e98995e e4474d1 e98995e 9df9460 e98995e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: dmis-lab/biobert-v1.1
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: biobert-v1.1-text-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert-v1.1-text-classifier
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2669
- Precision: 0.9098
- Recall: 0.9091
- Accuracy: 0.9089
- F1: 0.9089
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| No log | 1.0 | 154 | 0.3413 | 0.8822 | 0.8813 | 0.8804 | 0.8808 |
| No log | 2.0 | 308 | 0.2918 | 0.8945 | 0.8836 | 0.8845 | 0.8848 |
| No log | 3.0 | 462 | 0.2669 | 0.9098 | 0.9091 | 0.9089 | 0.9089 |
| 0.3597 | 4.0 | 616 | 0.2781 | 0.9175 | 0.9174 | 0.9170 | 0.9170 |
| 0.3597 | 5.0 | 770 | 0.2797 | 0.9203 | 0.9206 | 0.9203 | 0.9204 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|