--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - tts - generated_from_trainer datasets: - microsoft/speecht5_tts model-index: - name: SpeechT5 Technical English results: [] --- # SpeechT5 Technical English This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the TTS_English_Technical_data dataset. It achieves the following results on the evaluation set: - Loss: 0.4567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6959 | 0.3581 | 100 | 0.5174 | | 4.3058 | 0.7162 | 200 | 0.4934 | | 4.1364 | 1.0743 | 300 | 0.4732 | | 3.9969 | 1.4324 | 400 | 0.4615 | | 3.9857 | 1.7905 | 500 | 0.4567 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1