--- library_name: stable-baselines3 tags: - MsPacmanNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacmanNoFrameskip-v4 type: MsPacmanNoFrameskip-v4 metrics: - type: mean_reward value: 1470.00 +/- 492.52 name: mean_reward verified: false --- # **PPO** Agent playing **MsPacmanNoFrameskip-v4** This is a trained model of a **PPO** agent playing **MsPacmanNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env MsPacmanNoFrameskip-v4 -orga MattStammers -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MsPacmanNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env MsPacmanNoFrameskip-v4 -orga MattStammers -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MsPacmanNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env MsPacmanNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env MsPacmanNoFrameskip-v4 -f logs/ -orga MattStammers ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('normalize', False), ('policy', 'CnnPolicy'), ('vf_coef', 0.5)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ``` Extended replay is available. Performance is only moderate after 10 million training steps