--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - Custom_activation_from_scratch train_whisper(12layerschange,10000_2000_2000_200) - generated_from_trainer datasets: - darija-c metrics: - bleu model-index: - name: 'Whisper small darija translate ' results: [] --- # Whisper small darija translate This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Darija-C dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Bleu: 0.0681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 16000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:---------:|:-----:|:---------------:|:------:| | 0.6324 | 133.3333 | 2000 | 0.5772 | 0.0 | | 0.2913 | 266.6667 | 4000 | 0.2546 | 0.1229 | | 0.2803 | 400.0 | 6000 | 0.2447 | 0.0859 | | 0.2342 | 533.3333 | 8000 | 0.2505 | 0.0428 | | 0.0562 | 666.6667 | 10000 | 0.0231 | 0.1789 | | 0.0002 | 800.0 | 12000 | 0.0002 | 0.1136 | | 0.0001 | 933.3333 | 14000 | 0.0001 | 0.0681 | | 0.0001 | 1066.6667 | 16000 | 0.0001 | 0.0681 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 2.19.2 - Tokenizers 0.20.3