--- license: afl-3.0 base_model: masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0 tags: - generated_from_trainer metrics: - f1 - precision - recall - accuracy model-index: - name: ewc_stabilised results: [] --- # ewc_stabilised This model is a fine-tuned version of [masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0](https://huggingface.co/masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1396 - F1: 0.8317 - Precision: 0.8305 - Recall: 0.8328 - Accuracy: 0.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.3184 | 0.9993 | 701 | 0.1480 | 0.7895 | 0.7950 | 0.7841 | 0.9511 | | 0.1333 | 2.0 | 1403 | 0.1271 | 0.8195 | 0.8148 | 0.8242 | 0.9578 | | 0.0975 | 2.9993 | 2104 | 0.1241 | 0.8289 | 0.8254 | 0.8324 | 0.9598 | | 0.0744 | 4.0 | 2806 | 0.1293 | 0.8307 | 0.8313 | 0.8300 | 0.9603 | | 0.0596 | 4.9964 | 3505 | 0.1396 | 0.8317 | 0.8305 | 0.8328 | 0.9605 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1