--- license: apache-2.0 base_model: bioformers/bioformer-16L tags: - generated_from_trainer metrics: - f1 - precision - recall - accuracy model-index: - name: cl_ct_custom_model results: [] datasets: - tner/bionlp2004 language: - en pipeline_tag: token-classification inference: true library_name: transformers --- # cl_ct_custom_model This model is a fine-tuned version of [bioformers/bioformer-16L](https://huggingface.co/bioformers/bioformer-16L) on the (https://huggingface.co/datasets/tner/bionlp2004) dataset. It achieves the following results on the evaluation set: - Loss: 0.2590 - F1: 0.7609 - Precision: 0.7112 - Recall: 0.8181 - Accuracy: 0.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.4568 | 0.9971 | 259 | 0.2146 | 0.8139 | 0.7920 | 0.8370 | 0.9326 | | 0.2115 | 1.9981 | 519 | 0.1907 | 0.8349 | 0.8125 | 0.8586 | 0.9379 | | 0.1802 | 2.9990 | 779 | 0.1912 | 0.8407 | 0.8178 | 0.8650 | 0.9394 | | 0.164 | 4.0 | 1039 | 0.1869 | 0.8449 | 0.8255 | 0.8652 | 0.9401 | | 0.1518 | 4.9971 | 1298 | 0.1819 | 0.8525 | 0.8348 | 0.8710 | 0.9428 | | 0.1424 | 5.9981 | 1558 | 0.1842 | 0.8506 | 0.8351 | 0.8666 | 0.9422 | | 0.134 | 6.9990 | 1818 | 0.1869 | 0.8539 | 0.8373 | 0.8712 | 0.9428 | | 0.128 | 8.0 | 2078 | 0.1889 | 0.8540 | 0.8374 | 0.8712 | 0.9429 | | 0.1241 | 8.9971 | 2337 | 0.1892 | 0.8559 | 0.8401 | 0.8724 | 0.9432 | | 0.1199 | 9.9711 | 2590 | 0.1899 | 0.8552 | 0.8392 | 0.8718 | 0.9431 | ## Eval Classification report | Class | Precision | Recall | F1-Score | Support | |-------------|------------|--------|----------|---------| | DNA | 0.78 | 0.84 | 0.81 | 2494 | | RNA | 0.83 | 0.89 | 0.86 | 238 | | Cell Line | 0.81 | 0.85 | 0.83 | 1050 | | Cell Type | 0.74 | 0.79 | 0.77 | 775 | | Protein | 0.88 | 0.90 | 0.89 | 6196 | | **Micro Avg** | **0.84** | **0.87** | **0.86** | **10753** | | **Macro Avg** | **0.81** | **0.86** | **0.83** | **10753** | | **Weighted Avg** | **0.84** | **0.87** | **0.86** | **10753** | ## Test Results | Class | Precision | Recall | F1-Score | Support | |-------------|-----------|--------|----------|---------| | DNA | 0.74 | 0.79 | 0.76 | 2210 | | RNA | 0.73 | 0.76 | 0.75 | 287 | | Cell Line | 0.50 | 0.76 | 0.61 | 1057 | | Cell Type | 0.75 | 0.68 | 0.71 | 2761 | | Protein | 0.72 | 0.87 | 0.79 | 10082 | | **Micro Avg** | **0.71** | **0.82** | **0.76** | **16397** | | **Macro Avg** | **0.69** | **0.77** | **0.72** | **16397** | | **Weighted Avg** | **0.72** | **0.82** | **0.76** | **16397** | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1