--- base_model: openai/whisper-medium datasets: - Marcusxx/CHUNGNAM_Addresses_NO_NUM language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: CHUNGNAM_FM_AddressesM_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CHUNGNAM_FM_AddressesM_model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/CHUNGNAM_Addresses_NO_NUM dataset. It achieves the following results on the evaluation set: - Loss: 0.2603 - Cer: 6.2263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.1938 | 0.6906 | 1000 | 0.2020 | 5.9531 | | 0.1554 | 1.3812 | 2000 | 0.1852 | 5.9452 | | 0.1048 | 2.0718 | 3000 | 0.1793 | 5.8234 | | 0.1126 | 2.7624 | 4000 | 0.1794 | 7.6374 | | 0.0695 | 3.4530 | 5000 | 0.1922 | 6.2990 | | 0.0382 | 4.1436 | 6000 | 0.1999 | 6.2872 | | 0.0385 | 4.8343 | 7000 | 0.2019 | 7.5529 | | 0.0203 | 5.5249 | 8000 | 0.2141 | 7.6944 | | 0.0142 | 6.2155 | 9000 | 0.2211 | 6.0239 | | 0.0129 | 6.9061 | 10000 | 0.2190 | 8.6417 | | 0.0109 | 7.5967 | 11000 | 0.2262 | 8.0187 | | 0.0062 | 8.2873 | 12000 | 0.2286 | 10.8626 | | 0.0074 | 8.9779 | 13000 | 0.2323 | 7.1874 | | 0.005 | 9.6685 | 14000 | 0.2370 | 7.7829 | | 0.0046 | 10.3591 | 15000 | 0.2415 | 6.2243 | | 0.0021 | 11.0497 | 16000 | 0.2459 | 6.0946 | | 0.002 | 11.7403 | 17000 | 0.2474 | 6.1713 | | 0.0009 | 12.4309 | 18000 | 0.2572 | 6.0887 | | 0.0001 | 13.1215 | 19000 | 0.2582 | 6.2715 | | 0.0002 | 13.8122 | 20000 | 0.2603 | 6.2263 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1