--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: distilhubert-finetuned-cry-detector results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9830508474576272 --- # distilhubert-finetuned-cry-detector This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0703 - Accuracy: 0.9831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 123 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 11 | 0.1909 | 0.9435 | | No log | 2.0 | 22 | 0.1998 | 0.9322 | | No log | 3.0 | 33 | 0.0904 | 0.9718 | | No log | 4.0 | 44 | 0.1063 | 0.9661 | | No log | 5.0 | 55 | 0.0770 | 0.9774 | | No log | 6.0 | 66 | 0.0832 | 0.9774 | | No log | 7.0 | 77 | 0.0658 | 0.9774 | | No log | 8.0 | 88 | 0.0681 | 0.9831 | | No log | 9.0 | 99 | 0.0701 | 0.9831 | | No log | 10.0 | 110 | 0.0703 | 0.9831 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1