--- language: - en - es - eu datasets: - squad --- # Description This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD version 1.1, that is able to answer basic factual questions in English, Spanish and Basque. ### Outputs The model predicts a span of text from the context and a score for the probability for that span to be the correct answer. ### How to use The model can be used directly with a *question-answering* pipeline: ```python >>> from transformers import pipeline >>> context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" >>> question = "When was Florence Nightingale born?" >>> qa = pipeline("question-answering", model="MarcBrun/ixambert-finetuned-squad") >>> qa(question=question,context=context) {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ### Hyperparameters ``` batch_size = 8 n_epochs = 3 base_LM_model = "ixambert-base-cased" learning_rate = 2e-5 lr_schedule = "linear" max_seq_len = 384 doc_stride = 128 ```