Update README.md
Browse files
README.md
CHANGED
|
@@ -7,232 +7,5 @@ license: apache-2.0
|
|
| 7 |
<img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/>
|
| 8 |
<p>
|
| 9 |
<h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2>
|
| 10 |
-
<h5 align="center"> If you like our project, please give us a star โญ on GitHub for latest update. </h2>
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
## ๐ฐ News
|
| 16 |
-
* **[2024.01.27]** ๐๐๐ Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters.
|
| 17 |
-
* **[2024.01.17]** ๐ฅ๐ฅ๐ฅ Our [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) has been accepted at ICLR 2024!
|
| 18 |
-
* **[2024.01.16]** ๐ฅ๐ฅ๐ฅ We reorganize the code and support LoRA fine-tuning, checking [finetune_lora.sh](scripts/v1_5/finetune_lora.sh).
|
| 19 |
-
* **[2023.11.30]** ๐ค Thanks to the generous contributions of the community, the [OpenXLab's demo](https://openxlab.org.cn/apps/detail/houshaowei/Video-LLaVA) is now accessible.
|
| 20 |
-
* **[2023.11.23]** We are training a new and powerful model.
|
| 21 |
-
* **[2023.11.21]** ๐ค Check out the [replicate demo](https://replicate.com/nateraw/video-llava), created by [@nateraw](https://github.com/nateraw), who has generously supported our research!
|
| 22 |
-
* **[2023.11.20]** ๐ค [Hugging Face demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** ๐ this repository for the latest updates.
|
| 23 |
-
|
| 24 |
-
## ๐ฎ Highlights
|
| 25 |
-
|
| 26 |
-
Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset.
|
| 27 |
-
|
| 28 |
-
### ๐ก Simple baseline, learning united visual representation by alignment before projection
|
| 29 |
-
- With **the binding of unified visual representations to the language feature space**, we enable an LLM to perform visual reasoning capabilities on both images and videos simultaneously.
|
| 30 |
-
|
| 31 |
-
### ๐ฅ High performance, complementary learning with video and image
|
| 32 |
-
- Extensive experiments demonstrate **the complementarity of modalities**, showcasing significant superiority when compared to models specifically designed for either images or videos.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
## ๐ค Demo
|
| 36 |
-
|
| 37 |
-
### Gradio Web UI
|
| 38 |
-
|
| 39 |
-
Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) in Huggingface Spaces.
|
| 40 |
-
```bash
|
| 41 |
-
python -m videollava.serve.gradio_web_server
|
| 42 |
-
```
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
### CLI Inference
|
| 47 |
-
|
| 48 |
-
```bash
|
| 49 |
-
python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit
|
| 50 |
-
```
|
| 51 |
-
|
| 52 |
-
```bash
|
| 53 |
-
python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
## ๐ ๏ธ Requirements and Installation
|
| 59 |
-
* Python >= 3.10
|
| 60 |
-
* Pytorch == 2.0.1
|
| 61 |
-
* CUDA Version >= 11.7
|
| 62 |
-
* Install required packages:
|
| 63 |
-
```bash
|
| 64 |
-
git clone https://github.com/PKU-YuanGroup/Video-LLaVA
|
| 65 |
-
cd Video-LLaVA
|
| 66 |
-
conda create -n videollava python=3.10 -y
|
| 67 |
-
conda activate videollava
|
| 68 |
-
pip install --upgrade pip # enable PEP 660 support
|
| 69 |
-
pip install -e .
|
| 70 |
-
pip install -e ".[train]"
|
| 71 |
-
pip install flash-attn --no-build-isolation
|
| 72 |
-
pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d
|
| 73 |
-
```
|
| 74 |
-
|
| 75 |
-
## ๐ค API
|
| 76 |
-
**We open source all codes.** If you want to load the model (e.g. ```LanguageBind/Video-LLaVA-7B```) on local, you can use the following code snippets.
|
| 77 |
-
|
| 78 |
-
### Inference for image
|
| 79 |
-
```python
|
| 80 |
-
import torch
|
| 81 |
-
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 82 |
-
from videollava.conversation import conv_templates, SeparatorStyle
|
| 83 |
-
from videollava.model.builder import load_pretrained_model
|
| 84 |
-
from videollava.utils import disable_torch_init
|
| 85 |
-
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 86 |
-
|
| 87 |
-
def main():
|
| 88 |
-
disable_torch_init()
|
| 89 |
-
image = 'videollava/serve/examples/extreme_ironing.jpg'
|
| 90 |
-
inp = 'What is unusual about this image?'
|
| 91 |
-
model_path = 'LanguageBind/Video-LLaVA-7B'
|
| 92 |
-
cache_dir = 'cache_dir'
|
| 93 |
-
device = 'cuda'
|
| 94 |
-
load_4bit, load_8bit = True, False
|
| 95 |
-
model_name = get_model_name_from_path(model_path)
|
| 96 |
-
tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
|
| 97 |
-
image_processor = processor['image']
|
| 98 |
-
conv_mode = "llava_v1"
|
| 99 |
-
conv = conv_templates[conv_mode].copy()
|
| 100 |
-
roles = conv.roles
|
| 101 |
-
|
| 102 |
-
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
|
| 103 |
-
if type(image_tensor) is list:
|
| 104 |
-
tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
|
| 105 |
-
else:
|
| 106 |
-
tensor = image_tensor.to(model.device, dtype=torch.float16)
|
| 107 |
-
|
| 108 |
-
print(f"{roles[1]}: {inp}")
|
| 109 |
-
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
|
| 110 |
-
conv.append_message(conv.roles[0], inp)
|
| 111 |
-
conv.append_message(conv.roles[1], None)
|
| 112 |
-
prompt = conv.get_prompt()
|
| 113 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
| 114 |
-
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 115 |
-
keywords = [stop_str]
|
| 116 |
-
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 117 |
-
|
| 118 |
-
with torch.inference_mode():
|
| 119 |
-
output_ids = model.generate(
|
| 120 |
-
input_ids,
|
| 121 |
-
images=tensor,
|
| 122 |
-
do_sample=True,
|
| 123 |
-
temperature=0.2,
|
| 124 |
-
max_new_tokens=1024,
|
| 125 |
-
use_cache=True,
|
| 126 |
-
stopping_criteria=[stopping_criteria])
|
| 127 |
-
|
| 128 |
-
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 129 |
-
print(outputs)
|
| 130 |
-
|
| 131 |
-
if __name__ == '__main__':
|
| 132 |
-
main()
|
| 133 |
-
```
|
| 134 |
-
|
| 135 |
-
### Inference for video
|
| 136 |
-
```python
|
| 137 |
-
import torch
|
| 138 |
-
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 139 |
-
from videollava.conversation import conv_templates, SeparatorStyle
|
| 140 |
-
from videollava.model.builder import load_pretrained_model
|
| 141 |
-
from videollava.utils import disable_torch_init
|
| 142 |
-
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 143 |
-
|
| 144 |
-
def main():
|
| 145 |
-
disable_torch_init()
|
| 146 |
-
video = 'videollava/serve/examples/sample_demo_1.mp4'
|
| 147 |
-
inp = 'Why is this video funny?'
|
| 148 |
-
model_path = 'LanguageBind/Video-LLaVA-7B'
|
| 149 |
-
cache_dir = 'cache_dir'
|
| 150 |
-
device = 'cuda'
|
| 151 |
-
load_4bit, load_8bit = True, False
|
| 152 |
-
model_name = get_model_name_from_path(model_path)
|
| 153 |
-
tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
|
| 154 |
-
video_processor = processor['video']
|
| 155 |
-
conv_mode = "llava_v1"
|
| 156 |
-
conv = conv_templates[conv_mode].copy()
|
| 157 |
-
roles = conv.roles
|
| 158 |
-
|
| 159 |
-
video_tensor = video_processor(video, return_tensors='pt')['pixel_values']
|
| 160 |
-
if type(video_tensor) is list:
|
| 161 |
-
tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor]
|
| 162 |
-
else:
|
| 163 |
-
tensor = video_tensor.to(model.device, dtype=torch.float16)
|
| 164 |
-
|
| 165 |
-
print(f"{roles[1]}: {inp}")
|
| 166 |
-
inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp
|
| 167 |
-
conv.append_message(conv.roles[0], inp)
|
| 168 |
-
conv.append_message(conv.roles[1], None)
|
| 169 |
-
prompt = conv.get_prompt()
|
| 170 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
| 171 |
-
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 172 |
-
keywords = [stop_str]
|
| 173 |
-
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 174 |
-
|
| 175 |
-
with torch.inference_mode():
|
| 176 |
-
output_ids = model.generate(
|
| 177 |
-
input_ids,
|
| 178 |
-
images=tensor,
|
| 179 |
-
do_sample=True,
|
| 180 |
-
temperature=0.1,
|
| 181 |
-
max_new_tokens=1024,
|
| 182 |
-
use_cache=True,
|
| 183 |
-
stopping_criteria=[stopping_criteria])
|
| 184 |
-
|
| 185 |
-
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 186 |
-
print(outputs)
|
| 187 |
-
|
| 188 |
-
if __name__ == '__main__':
|
| 189 |
-
main()
|
| 190 |
-
```
|
| 191 |
-
|
| 192 |
-
## ๐๏ธ Training & Validating
|
| 193 |
-
The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md).
|
| 194 |
-
|
| 195 |
-
## ๐ Acknowledgement
|
| 196 |
-
* [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant.
|
| 197 |
-
* [Video-ChatGPT](https://github.com/mbzuai-oryx/Video-ChatGPT) Great job contributing the evaluation code and dataset.
|
| 198 |
-
|
| 199 |
-
## ๐ Related Projects
|
| 200 |
-
* [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework.
|
| 201 |
-
* [Chat-UniVi](https://github.com/PKU-YuanGroup/Chat-UniVi) This framework empowers the model to efficiently utilize a limited number of visual tokens.
|
| 202 |
-
|
| 203 |
-
## ๐ License
|
| 204 |
-
* The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/Video-LLaVA/blob/main/LICENSE) file.
|
| 205 |
-
* The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
| 206 |
-
|
| 207 |
-
## โ๏ธ Citation
|
| 208 |
-
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
|
| 209 |
-
|
| 210 |
-
```BibTeX
|
| 211 |
-
@article{lin2023video,
|
| 212 |
-
title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection},
|
| 213 |
-
author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li},
|
| 214 |
-
journal={arXiv preprint arXiv:2311.10122},
|
| 215 |
-
year={2023}
|
| 216 |
-
}
|
| 217 |
-
```
|
| 218 |
-
|
| 219 |
-
```BibTeX
|
| 220 |
-
@article{zhu2023languagebind,
|
| 221 |
-
title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment},
|
| 222 |
-
author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others},
|
| 223 |
-
journal={arXiv preprint arXiv:2310.01852},
|
| 224 |
-
year={2023}
|
| 225 |
-
}
|
| 226 |
-
```
|
| 227 |
-
|
| 228 |
-
<!---->
|
| 229 |
-
## โจ Star History
|
| 230 |
-
[](https://star-history.com/#PKU-YuanGroup/Video-LLaVA&Date)
|
| 231 |
-
|
| 232 |
-
## ๐ค Contributors
|
| 233 |
-
|
| 234 |
-
<a href="https://github.com/PKU-YuanGroup/Video-LLaVA/graphs/contributors">
|
| 235 |
-
<img src="https://contrib.rocks/image?repo=PKU-YuanGroup/Video-LLaVA" />
|
| 236 |
-
</a>
|
| 237 |
|
| 238 |
|
|
|
|
| 7 |
<img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/>
|
| 8 |
<p>
|
| 9 |
<h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|