--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-cit-do1.5-wd1e-3 results: [] --- # whisper-large-cit-do1.5-wd1e-3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the SF 200 dataset. It achieves the following results on the evaluation set: - Loss: 0.6797 - Wer: 33.6384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.1289 | 0.8889 | 10 | 1.1191 | 48.9703 | | 1.095 | 1.7778 | 20 | 1.0078 | 40.9611 | | 0.936 | 2.6667 | 30 | 0.8691 | 39.3593 | | 0.7555 | 3.5556 | 40 | 0.7930 | 33.6384 | | 0.7013 | 4.4444 | 50 | 0.7202 | 34.7826 | | 0.6006 | 5.3333 | 60 | 0.6553 | 32.4943 | | 0.5082 | 6.2222 | 70 | 0.6172 | 31.5789 | | 0.4133 | 7.1111 | 80 | 0.5908 | 33.4096 | | 0.3771 | 8.0 | 90 | 0.5728 | 32.4943 | | 0.3013 | 8.8889 | 100 | 0.5693 | 33.4096 | | 0.266 | 9.7778 | 110 | 0.5728 | 33.4096 | | 0.2148 | 10.6667 | 120 | 0.5830 | 32.2654 | | 0.1829 | 11.5556 | 130 | 0.5947 | 32.7231 | | 0.1531 | 12.4444 | 140 | 0.6069 | 31.3501 | | 0.1246 | 13.3333 | 150 | 0.6206 | 34.0961 | | 0.1186 | 14.2222 | 160 | 0.6353 | 33.1808 | | 0.1013 | 15.1111 | 170 | 0.6533 | 35.0114 | | 0.0869 | 16.0 | 180 | 0.6650 | 33.6384 | | 0.0812 | 16.8889 | 190 | 0.6763 | 33.1808 | | 0.0763 | 17.7778 | 200 | 0.6797 | 33.6384 | ### Framework versions - Transformers 4.41.1 - Pytorch 1.13.1+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1