---
language:
- pt
license: apache-2.0
model-index:
- name: legislinho
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 63.05
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 51.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 43.23
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 88.7
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 67.76
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 63.8
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 72.64
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 65.63
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 56.52
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=MagusCorp/legislinho
      name: Open Portuguese LLM Leaderboard
---
**Nome do Modelo:** Legislinho

Teste no [▶️ Colab](https://colab.research.google.com/drive/1xeGhYTUt19TJgq0tn5LAHogEfumAJ3vj?usp=sharing)

Nunca usou Google Colab? Está confuso(a)? Siga esse tutórial: [Tutotial de Como Usar Colab](https://drive.google.com/file/d/1NUXsG3A-o4octv0d7JZis-pL_w8x-atA/view?usp=sharing)

**Versão:** v0

**Descrição:** O Legislinho é um modelo de Inteligência Artificial (AI) em sua versão inicial, não pronto para produção. Ele funciona como um primeira consulta em assuntos relacionados à legislação brasileira. Foi treinado a partir do OpenHermes no vade mecum da legislação brasileira e further fine-tunned (QLoRA) em um conjunto selecionado de perguntas e respostas sobre legislação brasileira.

**Aviso:** O Legislinho não substitui de forma alguma um advogado. Seu propósito é ser um guia, um norte para pessoas que se sentem perdidas no âmbito da legislação brasileira. As respostas fornecidas pelo modelo não constituem uma consulta jurídica real.

**Dados de Treinamento:** O modelo foi treinado usando o OpenHermes no vade mecum da legislação brasileira e ajustado com um conjunto selecionado de perguntas e respostas sobre legislação brasileira.

**Características do Modelo:** O Legislinho é capaz de responder a perguntas simples sobre legislação brasileira, fornecendo informações básicas e orientações gerais.

**Limitações:** Como o modelo está em sua versão inicial, suas respostas podem não ser sempre precisas ou completas. Além disso, o Legislinho não está equipado para lidar com casos complexos ou específicos que exigem conhecimento legal especializado.

**Considerações Éticas:** O uso do Legislinho deve ser feito com responsabilidade, entendendo que suas respostas são apenas orientações gerais e não substituem uma consulta jurídica profissional.

**Uso Recomendado:** O Legislinho pode ser usado por indivíduos que procuram uma compreensão básica de assuntos legais no Brasil. É recomendável que os usuários procurem orientação legal profissional para situações específicas ou complexas.

**Inferencia:** Para executar inferencia se necessita ter os seguintes pacotes instalados:
```
(pip install / poetry add)peft accelerate bitsandbytes safetensors transformers
```
Códico completo para inferência:
```
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('MagusCorp/legislinho')
tokenizer = AutoTokenizer.from_pretrained('MagusCorp/legislinho')
preprompt = 'Você é um agente de auxílio jurídico que não repete palavras de forma redundante e redige de forma clara concisa, como alguém formado em direito. Você não cita leis de forma alguma apenas procedimentos legais e operações. Você apenas é uma primeira consulta antes da pessoa procurar um advogado. Utilize todo o seu conhecimento da constituição brasileira para responder. Não repita a mesma informação em sua resposta. Seja assertivo. Atente-se a pergunta e elabore uma estratégia de solução do problema contemplando toda a pergunta, tal como faz um advogado. Pergunta:\n'
pospromt = "\nResposta:"

prompt = 'Minha mae vendeu a casa dela sem consultar nem um dos filhos ela pode fazer isso?'

inputs = tokenizer(preprompt+prompt+pospromt, return_tensors='pt').to('cuda')
outputs = model.generate(**inputs,max_new_tokens=1000)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer.split(prompt)[1])
```

**Avaliação:** O modelo ainda não foi avaliado em um ambiente de produção.

**Contato:** Para mais informações ou dúvidas sobre o Legislinho, entre em contato conosco. [email](costa@maguscorp.com.br)


Se quiser ajudar o desenvolvimento do Legislinho e outros projetos no forno. Considere doar:

<a href='https://ko-fi.com/maguscorp' target='_blank'><img height='35' style='border:0px;height:46px;' src='https://az743702.vo.msecnd.net/cdn/kofi3.png?v=0' border='0' alt='Buy Me a Coffee at ko-fi.com'/>

# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/MagusCorp/legislinho) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          | Value  |
|--------------------------|--------|
|Average                   |**63.6**|
|ENEM Challenge (No Images)|   63.05|
|BLUEX (No Images)         |   51.04|
|OAB Exams                 |   43.23|
|Assin2 RTE                |   88.70|
|Assin2 STS                |   67.76|
|FaQuAD NLI                |   63.80|
|HateBR Binary             |   72.64|
|PT Hate Speech Binary     |   65.63|
|tweetSentBR               |   56.52|