File size: 18,143 Bytes
08efd84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import copy
import json
import logging
import os
import pathlib
from typing import Sequence
import numpy as np
import torch
from monai.apps.vista3d.transforms import VistaPostTransformd, VistaPreTransformd
from monai.data.utils import decollate_batch, list_data_collate
from monai.networks.utils import eval_mode, train_mode
from monai.transforms import (
CastToTyped,
Compose,
CropForegroundd,
EnsureChannelFirstd,
EnsureTyped,
Invertd,
Lambdad,
LoadImaged,
Orientationd,
SaveImaged,
ScaleIntensityRanged,
Spacingd,
reset_ops_id,
)
from monai.utils import ForwardMode, optional_import, set_determinism
from monai.utils.enums import CommonKeys as Keys
from monai.utils.module import look_up_option
from scripts.inferer import Vista3dInferer
from transformers import AutoModel, Pipeline
from transformers.pipelines import PIPELINE_REGISTRY
rearrange, _ = optional_import("einops", name="rearrange")
FILE_PATH = os.path.dirname(__file__)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
class VISTA3DPipeline(Pipeline):
"""Define the VISTA3D pipeline."""
PREPROCESSING_EXTRA_ARGS = [
"image_key",
"resample_spacing",
"metadata_path",
]
INFERENCE_EXTRA_ARGS = [
"mode",
"amp",
"hyper_kwargs",
"roi_size",
"overlap",
"sw_batch_size",
"use_point_window",
]
POSTPROCESSING_EXTRA_ARGS = [
"pred_key",
"image_key",
"output_dir",
"output_ext",
"output_postfix",
"separate_folder",
"save_output",
]
EVERYTHING_LABEL = list(
set([i + 1 for i in range(132)])
- set([2, 16, 18, 20, 21, 23, 24, 25, 26, 27, 128, 129, 130, 131, 132])
)
def __init__(self, model, **kwargs):
super().__init__(model, **kwargs)
self.preprocessing_transforms = self._init_preprocessing_transforms(
**self._preprocess_params
)
self.inferer = self._init_inferer(**self._forward_params)
self.postprocessing_transforms = self._init_postprocessing_transforms(
**self._postprocess_params
)
def _init_inferer(
self,
roi_size: Sequence = (128, 128, 128),
overlap: float = 0.3,
sw_batch_size: int = 1,
use_point_window: bool = True,
):
return Vista3dInferer(
roi_size=roi_size,
overlap=overlap,
use_point_window=use_point_window,
sw_batch_size=sw_batch_size,
)
def _init_preprocessing_transforms(
self,
image_key: str = "image",
resample_spacing: Sequence = (1.5, 1.5, 1.5),
metadata_path: str = os.path.join(FILE_PATH, "metadata.json"),
):
device = self.device
subclass = {
"2": [14, 5],
"20": [28, 29, 30, 31, 32],
"21": list(range(33, 57)) + list(range(63, 98)) + [114, 120, 122],
}
metadata = json.loads(pathlib.Path(metadata_path).read_text())
labels_dict = metadata["network_data_format"]["outputs"]["pred"]["channel_def"]
preprocessing_transforms = Compose(
[
LoadImaged(keys=image_key, image_only=True),
EnsureChannelFirstd(keys=image_key),
EnsureTyped(keys=image_key, device=device, track_meta=True),
Spacingd(keys=image_key, pixdim=resample_spacing, mode="bilinear"),
CropForegroundd(
keys=image_key, allow_smaller=True, margin=10, source_key=image_key
),
VistaPreTransformd(
keys=image_key, subclass=subclass, labels_dict=labels_dict
),
ScaleIntensityRanged(
keys=image_key,
a_min=-963.8247715525971,
a_max=1053.678477684517,
b_min=0,
b_max=1,
clip=True,
),
Orientationd(keys=image_key, axcodes="RAS"),
CastToTyped(keys=image_key, dtype=torch.float32),
]
)
return preprocessing_transforms
def _init_postprocessing_transforms(
self,
pred_key: str = "pred",
image_key: str = "image",
output_dir: str = "output_directory",
output_ext: str = ".nii.gz",
output_dtype: torch.dtype = torch.float32,
output_postfix: str = "seg",
separate_folder: bool = True,
save_output: bool = True,
):
transforms = [
VistaPostTransformd(keys=pred_key),
Invertd(
keys=pred_key,
transform=copy.deepcopy(self.preprocessing_transforms),
orig_keys=image_key,
nearest_interp=True,
to_tensor=True,
),
Lambdad(keys=pred_key, func=lambda x: torch.nan_to_num(x, nan=255)),
]
if save_output:
transforms.append(
SaveImaged(
keys=pred_key,
resample=False,
output_dir=output_dir,
output_ext=output_ext,
output_dtype=output_dtype,
output_postfix=output_postfix,
separate_folder=separate_folder,
),
)
postprocessing_transforms = Compose(transforms=transforms)
return postprocessing_transforms
def _sanitize_parameters(self, **kwargs):
"""
_sanitize_parameters exists to allow users to pass any parameters whenever they wish,
be it at initialization time pipeline(...., maybe_arg=4) or at call time pipe = pipeline(...); output = pipe(...., maybe_arg=4).
The returns of _sanitize_parameters are the 3 dicts of kwargs that will be passed directly to preprocess, _forward and postprocess.
Don't fill anything if the caller didn't call with any extra parameter. That allows to keep the default arguments in the function
definition which is always more “natural”."""
vista3d_preprocessing_kwargs = {}
vista3d_infer_kwargs = {}
vista3d_postprocessing_kwargs = {}
for key in self.INFERENCE_EXTRA_ARGS:
if key in kwargs:
vista3d_infer_kwargs[key] = kwargs[key]
for key in self.PREPROCESSING_EXTRA_ARGS:
if key in kwargs:
vista3d_preprocessing_kwargs[key] = kwargs[key]
for key in self.POSTPROCESSING_EXTRA_ARGS:
if key in kwargs:
vista3d_postprocessing_kwargs[key] = kwargs[key]
return (
vista3d_preprocessing_kwargs,
vista3d_infer_kwargs,
vista3d_postprocessing_kwargs,
)
def check_prompts_format(self, label_prompt, points, point_labels):
"""check the format of user prompts
label_prompt: [1,2,3,4,...,B] List of tensors
points: [[[x,y,z], [x,y,z], ...]] List of coordinates of a single object
point_labels: [[1,1,0,...]] List of scalar that matches number of points
"""
# check prompt is given
if label_prompt is None and points is None:
everything_labels = self.hyper_kwargs.get("everything_labels", None)
if everything_labels is not None:
label_prompt = [torch.tensor(_) for _ in everything_labels]
return label_prompt, points, point_labels
else:
raise ValueError("Prompt must be given for inference.")
# check label_prompt
if label_prompt is not None:
if isinstance(label_prompt, list):
if not np.all([len(_) == 1 for _ in label_prompt]):
raise ValueError(
"Label prompt must be a list of single scalar, [1,2,3,4,...,]."
)
if isinstance(label_prompt[0], list):
for prompt in label_prompt:
if not np.all([(x < 255).item() for x in prompt]):
raise ValueError(
"Current bundle only supports label prompt smaller than 255."
)
else:
if not np.all([(x < 255).item() for x in label_prompt]):
raise ValueError(
"Current bundle only supports label prompt smaller than 255."
)
if points is None:
supported_list = list(
{i + 1 for i in range(132)} - {16, 18, 129, 130, 131}
)
if isinstance(label_prompt[0], list):
for prompt in label_prompt:
if not np.all([(x < 255).item() for x in prompt]):
raise ValueError(
"Current bundle only supports label prompt smaller than 255."
)
else:
if not np.all([x in supported_list for x in label_prompt]):
raise ValueError(
"Undefined label prompt detected. Provide point prompts for zero-shot."
)
else:
raise ValueError("Label prompt must be a list, [1,2,3,4,...,].")
# check points
if points is not None:
if point_labels is None:
raise ValueError("Point labels must be given if points are given.")
if not np.all([len(_) == 3 for _ in points]):
raise ValueError(
"Points must be three dimensional (x,y,z) in the shape of [[x,y,z],...,[x,y,z]]."
)
if len(points) != len(point_labels):
raise ValueError("Points must match point labels.")
if not np.all([_ in [-1, 0, 1, 2, 3] for _ in point_labels]):
raise ValueError(
"Point labels can only be -1,0,1 and 2,3 for special flags."
)
if label_prompt is not None and points is not None:
if len(label_prompt) != 1:
raise ValueError(
"Label prompt can only be a single object if provided with point prompts."
)
# check point_labels
if point_labels is not None:
if points is None:
raise ValueError("Points must be given if point labels are given.")
return label_prompt, points, point_labels
def transform_points(self, point, affine):
"""transform point to the coordinates of the transformed image
point: numpy array [bs, N, 3]
"""
bs, n = point.shape[:2]
point = np.concatenate((point, np.ones((bs, n, 1))), axis=-1)
point = rearrange(point, "b n d -> d (b n)")
point = affine @ point
point = rearrange(point, "d (b n)-> b n d", b=bs)[:, :, :3]
return point
def preprocess(
self,
inputs,
**kwargs,
):
for key, value in kwargs.items():
if key in self._preprocess_params and value != self._preprocess_params[key]:
logging.warning(
f"Please set the parameter {key} during initialization."
)
if key not in self.PREPROCESSING_EXTRA_ARGS:
logging.warning(f"Cannot set parameter {key} for preprocessing.")
inputs = self.preprocessing_transforms(inputs)
inputs = list_data_collate([inputs])
return inputs
def _forward(
self,
inputs,
mode: str = ForwardMode.EVAL,
amp: bool = True,
hyper_kwargs: dict = {"user_prompt": 1, "everything_labels": 1},
):
set_determinism(seed=123)
if inputs is None:
raise ValueError("Must provide input data for inference.")
self.hyper_kwargs = hyper_kwargs
label_set = hyper_kwargs.get("label_set", None)
# this validation label set should be consistent with 'labels.unique()', used to generate fg/bg points
val_label_set = hyper_kwargs.get("val_label_set", label_set)
# If user provide prompts in the inference, input image must contain original affine.
# the point coordinates are from the original_affine space, while image here is after preprocess transforms.
if hyper_kwargs["user_prompt"]:
inputs, label_prompt, points, point_labels = (
inputs["image"],
inputs.get("label_prompt", None),
inputs.get("points", None),
inputs.get("point_labels", None),
)
labels = None
label_prompt, points, point_labels = self.check_prompts_format(
label_prompt, points, point_labels
)
inputs = inputs.to(self.device)
# For N foreground object, label_prompt is [1, N], but the batch number 1 needs to be removed. Convert to [N, 1]
label_prompt = (
torch.as_tensor([label_prompt]).to(inputs.device)[0].unsqueeze(-1)
if label_prompt is not None
else None
)
# For points, the size can only be [1, K, 3], where K is the number of points for this single foreground object.
if points is not None:
points = torch.as_tensor([points])
points = self.transform_points(
points,
np.linalg.inv(inputs.affine[0])
@ inputs.meta["original_affine"][0].numpy(),
)
points = torch.from_numpy(points).to(inputs.device)
point_labels = (
torch.as_tensor([point_labels]).to(inputs.device)
if point_labels is not None
else None
)
# If validation with ground truth label available.
else:
# TODO add these as attribute.
inputs, labels = inputs["image"], inputs["label"]
# create label prompt, this should be consistent with the label prompt used for training.
if label_set is None:
output_classes = hyper_kwargs.get("output_classes", None)
label_set = np.arange(output_classes).tolist()
label_prompt = torch.tensor(label_set).to(self.device).unsqueeze(-1)
# point prompt is generated withing vista3d, provide empty points
points = torch.zeros(label_prompt.shape[0], 1, 3).to(inputs.device)
point_labels = -1 + torch.zeros(label_prompt.shape[0], 1).to(inputs.device)
# validation for either auto or point.
if hyper_kwargs.get("val_head", "auto") == "auto":
# automatic only validation
# remove val_label_set, vista3d will not sample points from gt labels.
val_label_set = None
else:
# point only validation
label_prompt = None
# put iteration outputs into outputs TODO need to align with the customized inputs
outputs = {Keys.IMAGE: inputs, Keys.LABEL: labels}
mode = look_up_option(mode, ForwardMode)
if mode == ForwardMode.EVAL:
mode = eval_mode
elif mode == ForwardMode.TRAIN:
mode = train_mode
else:
raise ValueError(f"unsupported mode: {mode}, should be 'eval' or 'train'.")
# execute forward computation
self.model.network.to(self.device)
with mode(self.model):
if amp:
with torch.autocast("cuda"):
outputs[Keys.PRED] = self.inferer(
inputs=inputs,
network=self.model.network,
point_coords=points,
point_labels=point_labels,
class_vector=label_prompt,
labels=labels,
label_set=val_label_set,
)
else:
outputs[Keys.PRED] = self.inferer(
inputs=inputs,
network=self.model.network,
point_coords=points,
point_labels=point_labels,
class_vector=label_prompt,
labels=labels,
label_set=val_label_set,
)
inputs = reset_ops_id(inputs)
# Add dim 0 for decollate batch
outputs["label_prompt"] = (
label_prompt.unsqueeze(0) if label_prompt is not None else None
)
outputs["points"] = points.unsqueeze(0) if points is not None else None
outputs["point_labels"] = (
point_labels.unsqueeze(0) if point_labels is not None else None
)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return outputs
def postprocess(self, outputs, **kwargs):
for key, value in kwargs.items():
if (
key in self._postprocess_params
and value != self._postprocess_params[key]
):
logging.warning(
f"Please set the parameter {key} during initialization."
)
if key not in self.POSTPROCESSING_EXTRA_ARGS:
logging.warning(f"Cannot set parameter {key} for postprocessing.")
outputs = self.postprocessing_transforms(decollate_batch(outputs))
return outputs
def register_simple_pipeline():
PIPELINE_REGISTRY.register_pipeline(
"vista3d",
pipeline_class=VISTA3DPipeline,
pt_model=AutoModel,
default={"pt": (os.path.join(FILE_PATH, "vista3d_pretrained_model"), "")},
type="image", # current support type: text, audio, image, multimodal
)
|