--- license: mit pipeline_tag: object-detection tags: - License-Plate-Recognizer - Yolov8m - Object detection --- **License Plate Detection Model using YOLOv8** ============================================= **Model Description** -------------------- This is a deep learning model for detecting and cropping license plates in images, trained using the YOLOv8 object detection architecture. The model takes an image of a vehicle as input and returns a cropped image of the detected license plate. **Dataset** ---------- The model was trained on a dataset of 500 images of vehicles with annotated license plates. The dataset was curated to include a variety of license plate types, angles, and lighting conditions. **Model Training** ----------------- The model was trained using the YOLOv8 architecture with the following hyperparameters: * Batch size: 32 * Epochs: 50 * Learning rate: 0.001 * Optimizer: Adam * Loss function: Mean Average Precision (MAP) **Model Performance** --------------------- ![confusion_matrix.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/6Wr5WE6dPC_6AisU07hEy.png) The model achieves the following performance metrics on the validation set: ![val_batch1_pred.jpg](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/V37GbUwKr-CXaNunUOdqc.jpeg) * mAP (mean Average Precision): 0.92 * AP (Average Precision) for license plates: 0.95 * Recall: 0.93 * Precision: 0.94 ![results.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/_dDT5Bp5l4nGoTf8k9kMs.png) **Usage** ----- To use this model, you can follow these steps: 1. Install the required libraries: `pip install ultralytics` 2. Load the model: `model = torch.hub.load('ultralytics/yolov8', 'custom', path='path/to/model.pt')` 3. Load the input image: `img = cv2.imread('path/to/image.jpg')` 4. Preprocess the input image: `img = cv2.resize(img, (640, 480))` 5. Run the model: `results = model(img)` 6. Extract the cropped license plate image: `license_plate_img = results.crop[0].cpu().numpy()` **Example Code** -------------- Here is an example code snippet to get you started: ```python import cv2 import torch # Load the model model = torch.hub.load('ultralytics/yolov8', 'custom', path='path/to/model.pt') # Load the input image img = cv2.imread('path/to/image.jpg') # Preprocess the input image img = cv2.resize(img, (640, 480)) # Run the model results = model(img) # Extract the cropped license plate image license_plate_img = results.crop[0].cpu().numpy() cv2.imwrite('license_plate.jpg', license_plate_img)