# BERT-tiny model finetuned with M-FAC This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 1024 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on SQuAD version 2 validation set: ```bash exact_match = 50.29 f1 = 52.43 ``` Mean and standard deviation for 5 runs on SQuAD version 2 validation set: | | Exact Match | F1 | |:----:|:-----------:|:----:| | Adam | 48.41 ± 0.57 | 49.99 ± 0.54 | | M-FAC | 49.80 ± 0.43 | 52.18 ± 0.20 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_qa.py \ --seed 42 \ --model_name_or_path prajjwal1/bert-tiny \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 1e-4 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC). A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials). ## BibTeX entry and citation info ```bibtex @article{frantar2021m, title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information}, author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan}, journal={Advances in Neural Information Processing Systems}, volume={35}, year={2021} } ```