# BERT-tiny model finetuned with M-FAC This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 1024 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on SQuAD version 2 validation set: ```bash exact_match = 50.29 f1 = 52.43 ``` Mean and standard deviation for 5 runs on SQuAD version 2 validation set: | | Exact Match | F1 | |:----:|:-----------:|:----:| | Adam | 48.41 ± 0.57 | 49.99 ± 0.54 | | M-FAC | 49.80 ± 0.43 | 52.18 ± 0.20 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_qa.py \ --seed 42 \ --model_name_or_path prajjwal1/bert-tiny \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 1e-4 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). ## BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2107-03356, author = {Elias Frantar and Eldar Kurtic and Dan Alistarh}, title = {Efficient Matrix-Free Approximations of Second-Order Information, with Applications to Pruning and Optimization}, journal = {CoRR}, volume = {abs/2107.03356}, year = {2021}, url = {https://arxiv.org/abs/2107.03356}, eprinttype = {arXiv}, eprint = {2107.03356}, timestamp = {Tue, 20 Jul 2021 15:08:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-03356.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```