Luca77 commited on
Commit
054db1d
·
1 Parent(s): f184557
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 1473.14 +/- 369.75
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1506.49 +/- 61.06
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:80eba1034c708772e120c1572c0ab9179b0a6d5aa3815a991971585891a2bdbd
3
- size 129261
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2968492bb0ec2b8909e4ebb9397843b094c23e8246a1d3fbed6357ecd0d825c7
3
+ size 129247
a2c-AntBulletEnv-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.7.0
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7b18afe50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7b18afee0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7b18aff70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7b18b4040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fe7b18b40d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fe7b18b4160>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7b18b41f0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7b18b4280>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fe7b18b4310>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7b18b43a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7b18b4430>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7b18b44c0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fe7b18b1a00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -32,48 +32,21 @@
32
  "weight_decay": 0
33
  }
34
  },
35
- "observation_space": {
36
- ":type:": "<class 'gym.spaces.box.Box'>",
37
- ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
- "dtype": "float32",
39
- "_shape": [
40
- 28
41
- ],
42
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
- "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
- "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
- "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
- "_np_random": null
47
- },
48
- "action_space": {
49
- ":type:": "<class 'gym.spaces.box.Box'>",
50
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
- "dtype": "float32",
52
- "_shape": [
53
- 8
54
- ],
55
- "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
- "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
- "bounded_below": "[ True True True True True True True True]",
58
- "bounded_above": "[ True True True True True True True True]",
59
- "_np_random": null
60
- },
61
- "n_envs": 4,
62
  "num_timesteps": 2000000,
63
  "_total_timesteps": 2000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1680355295566408909,
68
- "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
71
  ":type:": "<class 'function'>",
72
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAasCUB5CjQ/XTxqP++OHMANgDc/1IIewEAS8L6+QBU/7PnyvyMzSjxIis6+gxA3QFTc7r+c/cg82m/wP/zxkcBYyPI+geVSQOiW671NpobAHl0MP28SZUDPbn68AUleQML8pL/DP1zARPnav3/nQr/cYIq+8VNNv4V68r58Az+/e/3iPngT+T5ZkzM+novlPnfw87//guM9MruQvlj9qT+EkcS/BcYQQMEhBb8bQno/sLRov6oYqz+SFZc+201GvxZKxj+cyCBAED2SPp0ClT7C/KS/6caUPr+kFT+hH6g/FVQfvgBrtT7+Yko/Y+ERQPYs0T6AysY/hi4bv9dloT1y5i2//0enPwhsIb0uXq4/ggg3vYbhtT9LMRU/eWPvPJpQHz8Nyk+/mGJdv4CT8j7Dr9Q/ABWcv8VeGz+L5MQ/85tGP+nGlD6/pBU/f+dCv3JRlj++fmK/AnEkv7FI371fRZi/HVaKPa/bQ7+V4Ci/gyKDPwmm9b5zv5w/yFEXv8NP97/qeiPAR48pvwUl4L9+Nba/Fj5Dv7A62j00iqY/Eh3LvzaPJDwl/IC/ee1OvvObRj/pxpQ+v6QVP3/nQr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,15 +54,16 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHUi02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcIhsvQAAAACxduO/AAAAAELxuj0AAAAA/YziPwAAAADtOdk9AAAAAAv8/j8AAAAAVYoMPgAAAADWCe6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2fgsNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEKDsL0AAAAAC9v0vwAAAABFK0e9AAAAAIO09T8AAAAAApkFvQAAAADIh+8/AAAAAHrnprwAAAAAiR7fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdAPzcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIRM69AAAAAEo66L8AAAAAXJ8GPgAAAAAGyPI/AAAAAMsiCD4AAAAA9a/7PwAAAABYjAO+AAAAAJZm7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5lai0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9GzGPQAAAAA4TNm/AAAAACJgMT0AAAAAzHr8PwAAAAB+Jec9AAAAAPmp6D8AAAAApteSPQAAAABoQ9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
88
  "sde_sample_freq": -1,
89
  "_current_progress_remaining": 0.0,
 
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCyOtZmqYKMAWyUTegDjAF0lEdAqsFk3XI2fnV9lChoBkdAnWfGWQfZEmgHTegDaAhHQKrG6YSg5BF1fZQoaAZHQKBIuNH6MzdoB03oA2gIR0CqyHo3aSLZdX2UKGgGR0CfcwL5hz/7aAdN6ANoCEdAqsmcauOjqXV9lChoBkdAna3NX5nDi2gHTegDaAhHQKrQxyEL6UJ1fZQoaAZHQJ1Nh7PY4AFoB03oA2gIR0Cq1dYZl4C7dX2UKGgGR0CfB27nPmgbaAdN6ANoCEdAqtb4IMSbpnV9lChoBkdAnczL7CSA6WgHTegDaAhHQKrXvkWhysF1fZQoaAZHQJrqMJswco9oB03oA2gIR0Cq3Ndp7CzkdX2UKGgGR0CdzuL/jsD5aAdN6ANoCEdAquHcR8MNMHV9lChoBkdAn92osZpBX2gHTegDaAhHQKri/J1aGHp1fZQoaAZHQJ1k9mmLtNVoB03oA2gIR0Cq4/xJEpiJdX2UKGgGR0CZMoE7nxJ/aAdN6ANoCEdAquupccENfHV9lChoBkdAnAaruYx+KGgHTegDaAhHQKrxRBRhttR1fZQoaAZHQJ2SY+1SflJoB03oA2gIR0Cq8l+RHPNWdX2UKGgGR0CeHSftx+8XaAdN6ANoCEdAqvMh0EHMU3V9lChoBkdAlpqBPwd8zGgHTegDaAhHQKr4Pw4sEq51fZQoaAZHQJ0ReEGqxTtoB03oA2gIR0Cq/UbGWD6FdX2UKGgGR0Ce16Z39rGjaAdN6ANoCEdAqv5nNcGC7XV9lChoBkdAncH0rTYukGgHTegDaAhHQKr/NXuE25x1fZQoaAZHQJqf8zHjp9toB03oA2gIR0CrBbdsabWmdX2UKGgGR0CcJ1yrxRVIaAdN6ANoCEdAqwydrRBu43V9lChoBkdAmmcoigTRIGgHTegDaAhHQKsN2Jb+tKZ1fZQoaAZHQJubKlMyrPtoB03oA2gIR0CrDq0MXrMUdX2UKGgGR8AwS3wTdtVJaAdL/2gIR0CrD9dz4k/sdX2UKGgGR0CbsnaNuLrHaAdN6ANoCEdAqxPRP2wmmnV9lChoBkdAmdwZyQxN7GgHTegDaAhHQKsZ66pYLb51fZQoaAZHQJpjWtV7x/doB03oA2gIR0CrGrLHdXT3dX2UKGgGR0CbO8qAz544aAdN6ANoCEdAqxvj2vjfenV9lChoBkdAmW9spkPMCGgHTegDaAhHQKsgLbeuV5d1fZQoaAZHQJnu7n0TURZoB03oA2gIR0CrKYUZNwirdX2UKGgGR0CZ4fKwY+B6aAdN6ANoCEdAqypP0RODa3V9lChoBkdAmWdsCcPOIWgHTegDaAhHQKsrgWSlnAZ1fZQoaAZHQJvlwK2KEWZoB03oA2gIR0CrL2tUOuq4dX2UKGgGR0Ccb4JMQEpzaAdN6ANoCEdAqzWgPEsJ6nV9lChoBkdAnMZHYlIEsGgHTegDaAhHQKs2YO2AoXt1fZQoaAZHQJm4EGhVU+9oB03oA2gIR0CrN5XEqDsddX2UKGgGR0CefAaLn9vTaAdN6ANoCEdAqzuRcs189nV9lChoBkdAnFLDXWe6I2gHTegDaAhHQKtD0T/yXld1fZQoaAZHQJ6A3bwjMV1oB03oA2gIR0CrRQAEEC/5dX2UKGgGR0Cc6tpaRp1zaAdN6ANoCEdAq0bFbRneznV9lChoBkdAnZ4LvCuU2WgHTegDaAhHQKtKx7Qb+991fZQoaAZHQJ3IW8ujASFoB03oA2gIR0CrUNakIomYdX2UKGgGR0CcKv/W1+iKaAdN6ANoCEdAq1GdNnGsFXV9lChoBkdAnYD4x1xKhGgHTegDaAhHQKtSxALy+Yd1fZQoaAZHQJwnskMTewdoB03oA2gIR0CrV+aAOJ+EdX2UKGgGR0Cc7vSH/LkkaAdN6ANoCEdAq2HXwkPcz3V9lChoBkdAm7ZrWI42j2gHTegDaAhHQKtjEml67d11fZQoaAZHQJm95UWEbo9oB03oA2gIR0CrZOuDJ2dNdX2UKGgGR0CbURexwAEMaAdN6ANoCEdAq2mUmICU5nV9lChoBkdAno9znzQNTmgHTegDaAhHQKtvzzzVc2R1fZQoaAZHQJ77lNSIgvFoB03oA2gIR0CrcJlLnLaFdX2UKGgGR0CfKV4NZvDQaAdN6ANoCEdAq3HS4tpVTHV9lChoBkdAn+NQ7PppvmgHTegDaAhHQKt2AJvYODt1fZQoaAZHQKCMIUA1ejVoB03oA2gIR0CrfNVEd/8VdX2UKGgGR0CgOwicf/3naAdN6ANoCEdAq33v/R3NcHV9lChoBkdAnb9h2OhkAmgHTegDaAhHQKt/rxrBTGZ1fZQoaAZHQJ/W3Dm8ujBoB03oA2gIR0CrhWdalk6LdX2UKGgGR0CdM5rq+rU9aAdN6ANoCEdAq4tzg/C66XV9lChoBkdAn1ifO6d1+2gHTegDaAhHQKuMNqzJIUd1fZQoaAZHQJ5E3VpbliloB03oA2gIR0CrjXPppvgndX2UKGgGR0CbF7xvNu+AaAdN6ANoCEdAq5FrbvgFYHV9lChoBkdAmEjP863iJmgHTegDaAhHQKuXk0LMLWt1fZQoaAZHQJkq8Q/X5FhoB03oA2gIR0CrmFd6sySFdX2UKGgGR0CL4zxlxwQ2aAdN6ANoCEdAq5nY5tFa0XV9lChoBkdAmOhrRa5f+mgHTegDaAhHQKuf3vFWGRF1fZQoaAZHQJwra7+T/yZoB03oA2gIR0CrpwbtJFspdX2UKGgGR0CaOfnWrfcfaAdN6ANoCEdAq6fMKPXCj3V9lChoBkdAmwC5RTCLuWgHTegDaAhHQKupAdZq20B1fZQoaAZHQJtNF+PRzBBoB03oA2gIR0CrrPoCdSVGdX2UKGgGR0CaUtP1tfoiaAdN6ANoCEdAq7Mn1lGwzXV9lChoBkdAmyZEaZQYUGgHTegDaAhHQKuz8F9roGJ1fZQoaAZHQJgOfYUWVNZoB03oA2gIR0CrtRkpZwGXdX2UKGgGR0CaaeIiC8ODaAdN6ANoCEdAq7oAysS00HV9lChoBkdAmg2Lt3OfNGgHTegDaAhHQKvCY2RaHKx1fZQoaAZHQJoYt2TxG2FoB03oA2gIR0CrwzIqLCN0dX2UKGgGR0CZ8TYRujynaAdN6ANoCEdAq8RXsqril3V9lChoBkdAmtTfbfxc3WgHTegDaAhHQKvIRspobn51fZQoaAZHQJiUKWJJoTRoB03oA2gIR0CrzoUwSJ0odX2UKGgGR0CZQOMWXTmXaAdN6ANoCEdAq89SS3b213V9lChoBkdAmnh1vybx3GgHTegDaAhHQKvQcJswco91fZQoaAZHQJVRPyDqW1NoB03oA2gIR0Cr1GGtp22YdX2UKGgGR0CYKRVf/m1ZaAdN6ANoCEdAq910g2ZRbnV9lChoBkdAmbYMHWz4UWgHTegDaAhHQKvesnOSntR1fZQoaAZHQJgsh9oexOdoB03oA2gIR0Cr397y6MBIdX2UKGgGR0CYKH3+MqBmaAdN6ANoCEdAq+PWmR/3FnV9lChoBkdAmksP3SKFZmgHTegDaAhHQKvp6HpKSPl1fZQoaAZHQJufpXCCSRtoB03oA2gIR0Cr6ql6Rhc8dX2UKGgGR0CZ+cKcNH6NaAdN6ANoCEdAq+vN6/qPfnV9lChoBkdAnQQKAWi1zGgHTegDaAhHQKvvrMUypJh1fZQoaAZHQJyF2VPepGZoB03oA2gIR0Cr9zkUbkwOdX2UKGgGR0CbfKl7dBSlaAdN6ANoCEdAq/hwtQKrrHV9lChoBkdAnM/PoFFDv2gHTegDaAhHQKv6Ui9qUNd1fZQoaAZHQJ48VyCFsYVoB03oA2gIR0Cr/zjtG/etdX2UKGgGR0CeNM4zabnYaAdN6ANoCEdArAVoBkqc3HV9lChoBkdAm70zGkvboWgHTegDaAhHQKwGPjvNNah1fZQoaAZHQJ0OgewLVnVoB03oA2gIR0CsB3yI55qudX2UKGgGR0CbO3E5hjOLaAdN6ANoCEdArAt98kUsWnV9lChoBkdAm76Y9kjHGWgHTegDaAhHQKwSNsQd0aJ1fZQoaAZHQJ2FSrn1WbRoB03oA2gIR0CsE2OuzQeFdWUu"
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
@@ -102,5 +76,32 @@
102
  "ent_coef": 0.0,
103
  "vf_coef": 0.4,
104
  "max_grad_norm": 0.5,
105
- "normalize_advantage": false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d34b063b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d34b06440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d34b064d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d34b06560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0d34b065f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0d34b06680>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d34b06710>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d34b067a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0d34b06830>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d34b068c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d34b06950>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d34b069e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0d34af3cc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
32
  "weight_decay": 0
33
  }
34
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  "num_timesteps": 2000000,
36
  "_total_timesteps": 2000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1683645729204772775,
41
+ "learning_rate": 0.0001,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABuYWz9emok/aNARv4KdQECtd8c/chgGPs2hMz8J8KW/a074Prciiz7/laY8czVzvCOAUL/8NjJAt254Pn2PnD6fbAc/Mi06P3fPfD9MWro/dGPrPx40mjt0iLo/0AMrPz26IMBwjKE+X7SDPtpQwT5x1FM/1czBP3Eaq7+EX2g/NBxhQPaWdsBU7/y94rJ2v7Xjtb5CJTs/O/YyP8Hmf0CsoUk/iZADwPCsKT8Hb5pAo3S7PwrwTj06bSa+774fvhn32jy4igDAfX+4PxUVjMA9uiDAN9ZKwF+0gz7aUME+udprPx75hj9gJAq/WIdvP/XVMEC4/bW+doLqPiUJz7/RXRQ/ojeBu8C70D9jW4Y/JWElPlFb3r/Zfjg/fdB8vpdnZj9TPEPAXTRLPxInoD+UYx0+5XhEQKrEYb9ITli8ft/LPnCMoT6ZzHjAR4EpwN/WT767ovM/qJARwHQAFb+sYpW+aJIDPu47lT5xRpW9rwBEvuxht71t/JM8XY2/vM0bs78GwyS9PUCuPvTcWTyS6hu/wPUZPV16BD/KUSw9sntgv56KCD0fOUy+BLeFvX7fyz5wjKE+X7SDPtpQwT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwpy21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvAuVvQAAAABFZva/AAAAAMoW0b0AAAAA4pL/PwAAAAAMYaO8AAAAAAN1/j8AAAAAJdyPvAAAAAAwOQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUl6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEScAT0AAAAA/5PyvwAAAAAfGwg9AAAAANah9j8AAAAAkA/EPQAAAADxKPc/AAAAAKNsib0AAAAArFPqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABurjTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICk9V27AAAAANZg7L8AAAAAEilwPQAAAAD5I+U/AAAAAK2qBz4AAAAATaLcPwAAAAALrbQ7AAAAAHQO3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/Ov21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9mrlPAAAAAD8qeK/AAAAAEcL1L0AAAAA4MHrPwAAAAD8KZ09AAAAAF6a6j8AAAAAMLPlPAAAAABK++K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
61
  "sde_sample_freq": -1,
62
  "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaY6EJ0GNeMAWyUTegDjAF0lEdAqv5KiM5wO3V9lChoBkdAiwoY7aIvamgHTegDaAhHQKr+oMOwxFl1fZQoaAZHQJQTjtE5QxhoB03oA2gIR0CrAU8ujASGdX2UKGgGR0CV5sYzSCvpaAdN6ANoCEdAqwVlD6WPcXV9lChoBkdAlJ4z/ACW/2gHTegDaAhHQKsLW85CF9N1fZQoaAZHQJX9XUG3WnVoB03oA2gIR0CrC9tl7MPjdX2UKGgGR0CVpzzyjHn2aAdN6ANoCEdAqw/gNNJvpHV9lChoBkdAlTC0Dp1RtWgHTegDaAhHQKsUr3K0UoN1fZQoaAZHQJROkwaisXBoB03oA2gIR0CrGchas6q9dX2UKGgGR0CW1pd4VymzaAdN6ANoCEdAqxoe8AaNuXV9lChoBkdAkyaQqVhTfmgHTegDaAhHQKscmd92HL11fZQoaAZHQJZFmUVzp5hoB03oA2gIR0CrIMrpJPIodX2UKGgGR0CXBljmjj7zaAdN6ANoCEdAqyYNhd+ocnV9lChoBkdAliablmvnsGgHTegDaAhHQKsmk41gpjN1fZQoaAZHQJUiCmzjWCpoB03oA2gIR0CrKozQVsUJdX2UKGgGR0CT/pwPAfuDaAdN6ANoCEdAqzA9TR6WxHV9lChoBkdAlUx4ToMa0mgHTegDaAhHQKs1Z5C4SYh1fZQoaAZHQItonaURnOBoB03oA2gIR0CrNcGZE2HddX2UKGgGR0CWRwFId2gWaAdN6ANoCEdAqzhREH+qBHV9lChoBkdAlngAkka/AWgHTegDaAhHQKs8xX5nDix1fZQoaAZHQItND+vQnhNoB03oA2gIR0CrQisyrPt2dX2UKGgGR0CU1CI9kjHGaAdN6ANoCEdAq0KGDvmYB3V9lChoBkdAloO8KCxu9GgHTegDaAhHQKtGSYYzi0h1fZQoaAZHQJXfH0th/iJoB03oA2gIR0CrTFQhOgxrdX2UKGgGR0CWkmmAbyYpaAdN6ANoCEdAq1FTM7lq8HV9lChoBkdAljHtn9NvfmgHTegDaAhHQKtRp4+KTB91fZQoaAZHQJQsx9jPOY9oB03oA2gIR0CrVCRlYlpodX2UKGgGR0CVfvu9eyAyaAdN6ANoCEdAq1hRC6YmcHV9lChoBkdAl0FNtVJcxGgHTegDaAhHQKtdXiTdLxt1fZQoaAZHQJYEGy/sVtZoB03oA2gIR0CrXbJI1+AmdX2UKGgGR0CVzwK9f1HwaAdN6ANoCEdAq2CbL2YfGXV9lChoBkdAlptRiG34K2gHTegDaAhHQKtnKXF98Z11fZQoaAZHQJZWUmiQDFJoB03oA2gIR0CrbOkSmIj4dX2UKGgGR0CMmH/bTMJQaAdN6ANoCEdAq21BSLqD9XV9lChoBkdAlsFdJOFg2WgHTegDaAhHQKtvyA2hqTN1fZQoaAZHQJRKTCSA6MloB03oA2gIR0Crc/lEZzgddX2UKGgGR0CVQ5uwHJLeaAdN6ANoCEdAq3leuA7Pp3V9lChoBkdAla5Yr8R+SmgHTegDaAhHQKt5u70WdmR1fZQoaAZHQJYYtAC4jKRoB03oA2gIR0CrfFKUu+RHdX2UKGgGR0CQlpQJHAh0aAdN6ANoCEdAq4KPO2RaHXV9lChoBkdAlic01AJLNGgHTegDaAhHQKuIvZIQOFx1fZQoaAZHQJVrJdD6WPdoB03oA2gIR0CriRNMoMKDdX2UKGgGR0CTJuF2FFlTaAdN6ANoCEdAq4udFrl/6XV9lChoBkdAlHurteD3/WgHTegDaAhHQKuP5HaN+9d1fZQoaAZHQJYD0j6eoUBoB03oA2gIR0CrlQvYODradX2UKGgGR0CVfn1mapgkaAdN6ANoCEdAq5Vi4c3l0nV9lChoBkdAkpvx+SbH62gHTegDaAhHQKuX/y6MBIZ1fZQoaAZHQJWTIUXYUWVoB03oA2gIR0CrnY2fTTfBdX2UKGgGR0CU/cZbY9PlaAdN6ANoCEdAq6SPJtBOYnV9lChoBkdAjNuuYQarFWgHTegDaAhHQKuk5QJokAx1fZQoaAZHQJY56c2BJ7NoB03oA2gIR0Crp2VeruIAdX2UKGgGR0CTjUI2OyVwaAdN6ANoCEdAq6uJTER8MXV9lChoBkdAlWBL6P8ye2gHTegDaAhHQKuwsqXF98Z1fZQoaAZHQJXsCXD3ueBoB03oA2gIR0CrsQYlIEr5dX2UKGgGR0CQ6AEX+ERKaAdN6ANoCEdAq7OEYfnwHHV9lChoBkdAlGkE9+w1SGgHTegDaAhHQKu43BX0Xgt1fZQoaAZHQJTW0FLWZqpoB03oA2gIR0CrwH1iF0xNdX2UKGgGR0CVBORe1KGtaAdN6ANoCEdAq8DVy7wrlXV9lChoBkdAlgJftx+8XmgHTegDaAhHQKvDasaKk2x1fZQoaAZHQJTJPH5rP+poB03oA2gIR0Crx71WCEpRdX2UKGgGR0CVMP5S3solaAdN6ANoCEdAq8z6k690zXV9lChoBkdAk4YhTKkl/2gHTegDaAhHQKvNUGZ/kNp1fZQoaAZHQJTWj3VTaTRoB03oA2gIR0Crz+KnWJ7+dX2UKGgGR0CWXkVW0Z3taAdN6ANoCEdAq9SN4NZvDXV9lChoBkdAliLF2zOX3WgHTegDaAhHQKvchybx3FF1fZQoaAZHQJXXLtu1ndxoB03oA2gIR0Cr3Oa4+bExdX2UKGgGR0CW4goUzsQeaAdN6ANoCEdAq9+GFDfFaXV9lChoBkdAla3Ae/5+IGgHTegDaAhHQKvjvn27FsJ1fZQoaAZHQJVndubZvk1oB03oA2gIR0Cr6Nuf/WDpdX2UKGgGR0CTY90KZ2IPaAdN6ANoCEdAq+kxCfHxSnV9lChoBkdAlGZMqBmPHWgHTegDaAhHQKvr2IVuaWp1fZQoaAZHQJPBalyimEZoB03oA2gIR0Cr8AtrKvFFdX2UKGgGR0CV7uqxC6YmaAdN6ANoCEdAq/fujsUqQXV9lChoBkdAlHj4GY8dP2gHTegDaAhHQKv4chdt2s91fZQoaAZHQJNwdBt1p0xoB03oA2gIR0Cr+4Qn6VMVdX2UKGgGR0CU9PEJBw+/aAdN6ANoCEdAq//NfReC1HV9lChoBkdAk9usGPgeimgHTegDaAhHQKwE810DEFZ1fZQoaAZHQJP2ORSxZ+xoB03oA2gIR0CsBUfk3juKdX2UKGgGR0CR1ehnJ1aGaAdN6ANoCEdArAfTLbHp8nV9lChoBkdAlHX9D6WPcWgHTegDaAhHQKwMAEhaC+V1fZQoaAZHQJIt60/nnuBoB03oA2gIR0CsEuMGorFwdX2UKGgGR0CTEGoR7JGOaAdN6ANoCEdArBNmJFb3XnV9lChoBkdAlFBrL2YfGWgHTegDaAhHQKwXQeRPoFF1fZQoaAZHQJVdfsgMc6xoB03oA2gIR0CsG2xQaaTfdX2UKGgGR0CTLvnHeaa1aAdN6ANoCEdArCCG/k/8mHV9lChoBkdAlYDS5y2hI2gHTegDaAhHQKwg35GBnSR1fZQoaAZHQJYZlQ+EAYJoB03oA2gIR0CsI2mjCYTkdX2UKGgGR0CSqszfrKNiaAdN6ANoCEdArCekbDMvAXV9lChoBkdAlUfcry1/lWgHTegDaAhHQKwto8nNPgx1fZQoaAZHQJSOZKODJ2doB03oA2gIR0CsLioaLn9vdX2UKGgGR0CVK6jRD1GtaAdN6ANoCEdArDJFcMVk+XV9lChoBkdAlMg4NAkcCGgHTegDaAhHQKw3RKXfIjp1fZQoaAZHQJMk+NvOyFBoB03oA2gIR0CsPG9SMtK7dX2UKGgGR0CVQobdrO7haAdN6ANoCEdArDzEQRPGhnV9lChoBkdAlS1FiKBNEmgHTegDaAhHQKw/T2YfGMp1fZQoaAZHQJGv9zEJjUdoB03oA2gIR0CsQ31dgOSXdX2UKGgGR0CVKPPnjhkzaAdN6ANoCEdArEjPNFBppXV9lChoBkdAlOsxZEDyOWgHTegDaAhHQKxJThfBvaV1fZQoaAZHQJUV6rjo6jpoB03oA2gIR0CsTSbwazeGdX2UKGgGR0CT4H814xDcaAdN6ANoCEdArFMOAy2x6nVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
 
76
  "ent_coef": 0.0,
77
  "vf_coef": 0.4,
78
  "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
  }
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd7b02a7b5c50d86925d1d4d4af82916cd3543a64ff45c2346a9d4c51fa391ef
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cf6e639078f5607dfac15812c0f1ee9a0684f5f0f790be251baf80525bec11b
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5400d0b4eba5cab0f39dbc7b2f8c5e06978e93bfffbc4702163840a266109d5d
3
- size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1b9140e6461429fb70dea1f258c19e29b221cda51827c90a8ed7c21dbe2fae2
3
+ size 56894
a2c-AntBulletEnv-v0/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.9.16
3
- - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7b18afe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7b18afee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7b18aff70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7b18b4040>", "_build": "<function ActorCriticPolicy._build at 0x7fe7b18b40d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7b18b4160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7b18b41f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7b18b4280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7b18b4310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7b18b43a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7b18b4430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7b18b44c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7b18b1a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680355295566408909, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAasCUB5CjQ/XTxqP++OHMANgDc/1IIewEAS8L6+QBU/7PnyvyMzSjxIis6+gxA3QFTc7r+c/cg82m/wP/zxkcBYyPI+geVSQOiW671NpobAHl0MP28SZUDPbn68AUleQML8pL/DP1zARPnav3/nQr/cYIq+8VNNv4V68r58Az+/e/3iPngT+T5ZkzM+novlPnfw87//guM9MruQvlj9qT+EkcS/BcYQQMEhBb8bQno/sLRov6oYqz+SFZc+201GvxZKxj+cyCBAED2SPp0ClT7C/KS/6caUPr+kFT+hH6g/FVQfvgBrtT7+Yko/Y+ERQPYs0T6AysY/hi4bv9dloT1y5i2//0enPwhsIb0uXq4/ggg3vYbhtT9LMRU/eWPvPJpQHz8Nyk+/mGJdv4CT8j7Dr9Q/ABWcv8VeGz+L5MQ/85tGP+nGlD6/pBU/f+dCv3JRlj++fmK/AnEkv7FI371fRZi/HVaKPa/bQ7+V4Ci/gyKDPwmm9b5zv5w/yFEXv8NP97/qeiPAR48pvwUl4L9+Nba/Fj5Dv7A62j00iqY/Eh3LvzaPJDwl/IC/ee1OvvObRj/pxpQ+v6QVP3/nQr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHUi02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcIhsvQAAAACxduO/AAAAAELxuj0AAAAA/YziPwAAAADtOdk9AAAAAAv8/j8AAAAAVYoMPgAAAADWCe6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2fgsNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEKDsL0AAAAAC9v0vwAAAABFK0e9AAAAAIO09T8AAAAAApkFvQAAAADIh+8/AAAAAHrnprwAAAAAiR7fvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdAPzcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIRM69AAAAAEo66L8AAAAAXJ8GPgAAAAAGyPI/AAAAAMsiCD4AAAAA9a/7PwAAAABYjAO+AAAAAJZm7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5lai0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9GzGPQAAAAA4TNm/AAAAACJgMT0AAAAAzHr8PwAAAAB+Jec9AAAAAPmp6D8AAAAApteSPQAAAABoQ9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCyOtZmqYKMAWyUTegDjAF0lEdAqsFk3XI2fnV9lChoBkdAnWfGWQfZEmgHTegDaAhHQKrG6YSg5BF1fZQoaAZHQKBIuNH6MzdoB03oA2gIR0CqyHo3aSLZdX2UKGgGR0CfcwL5hz/7aAdN6ANoCEdAqsmcauOjqXV9lChoBkdAna3NX5nDi2gHTegDaAhHQKrQxyEL6UJ1fZQoaAZHQJ1Nh7PY4AFoB03oA2gIR0Cq1dYZl4C7dX2UKGgGR0CfB27nPmgbaAdN6ANoCEdAqtb4IMSbpnV9lChoBkdAnczL7CSA6WgHTegDaAhHQKrXvkWhysF1fZQoaAZHQJrqMJswco9oB03oA2gIR0Cq3Ndp7CzkdX2UKGgGR0CdzuL/jsD5aAdN6ANoCEdAquHcR8MNMHV9lChoBkdAn92osZpBX2gHTegDaAhHQKri/J1aGHp1fZQoaAZHQJ1k9mmLtNVoB03oA2gIR0Cq4/xJEpiJdX2UKGgGR0CZMoE7nxJ/aAdN6ANoCEdAquupccENfHV9lChoBkdAnAaruYx+KGgHTegDaAhHQKrxRBRhttR1fZQoaAZHQJ2SY+1SflJoB03oA2gIR0Cq8l+RHPNWdX2UKGgGR0CeHSftx+8XaAdN6ANoCEdAqvMh0EHMU3V9lChoBkdAlpqBPwd8zGgHTegDaAhHQKr4Pw4sEq51fZQoaAZHQJ0ReEGqxTtoB03oA2gIR0Cq/UbGWD6FdX2UKGgGR0Ce16Z39rGjaAdN6ANoCEdAqv5nNcGC7XV9lChoBkdAncH0rTYukGgHTegDaAhHQKr/NXuE25x1fZQoaAZHQJqf8zHjp9toB03oA2gIR0CrBbdsabWmdX2UKGgGR0CcJ1yrxRVIaAdN6ANoCEdAqwydrRBu43V9lChoBkdAmmcoigTRIGgHTegDaAhHQKsN2Jb+tKZ1fZQoaAZHQJubKlMyrPtoB03oA2gIR0CrDq0MXrMUdX2UKGgGR8AwS3wTdtVJaAdL/2gIR0CrD9dz4k/sdX2UKGgGR0CbsnaNuLrHaAdN6ANoCEdAqxPRP2wmmnV9lChoBkdAmdwZyQxN7GgHTegDaAhHQKsZ66pYLb51fZQoaAZHQJpjWtV7x/doB03oA2gIR0CrGrLHdXT3dX2UKGgGR0CbO8qAz544aAdN6ANoCEdAqxvj2vjfenV9lChoBkdAmW9spkPMCGgHTegDaAhHQKsgLbeuV5d1fZQoaAZHQJnu7n0TURZoB03oA2gIR0CrKYUZNwirdX2UKGgGR0CZ4fKwY+B6aAdN6ANoCEdAqypP0RODa3V9lChoBkdAmWdsCcPOIWgHTegDaAhHQKsrgWSlnAZ1fZQoaAZHQJvlwK2KEWZoB03oA2gIR0CrL2tUOuq4dX2UKGgGR0Ccb4JMQEpzaAdN6ANoCEdAqzWgPEsJ6nV9lChoBkdAnMZHYlIEsGgHTegDaAhHQKs2YO2AoXt1fZQoaAZHQJm4EGhVU+9oB03oA2gIR0CrN5XEqDsddX2UKGgGR0CefAaLn9vTaAdN6ANoCEdAqzuRcs189nV9lChoBkdAnFLDXWe6I2gHTegDaAhHQKtD0T/yXld1fZQoaAZHQJ6A3bwjMV1oB03oA2gIR0CrRQAEEC/5dX2UKGgGR0Cc6tpaRp1zaAdN6ANoCEdAq0bFbRneznV9lChoBkdAnZ4LvCuU2WgHTegDaAhHQKtKx7Qb+991fZQoaAZHQJ3IW8ujASFoB03oA2gIR0CrUNakIomYdX2UKGgGR0CcKv/W1+iKaAdN6ANoCEdAq1GdNnGsFXV9lChoBkdAnYD4x1xKhGgHTegDaAhHQKtSxALy+Yd1fZQoaAZHQJwnskMTewdoB03oA2gIR0CrV+aAOJ+EdX2UKGgGR0Cc7vSH/LkkaAdN6ANoCEdAq2HXwkPcz3V9lChoBkdAm7ZrWI42j2gHTegDaAhHQKtjEml67d11fZQoaAZHQJm95UWEbo9oB03oA2gIR0CrZOuDJ2dNdX2UKGgGR0CbURexwAEMaAdN6ANoCEdAq2mUmICU5nV9lChoBkdAno9znzQNTmgHTegDaAhHQKtvzzzVc2R1fZQoaAZHQJ77lNSIgvFoB03oA2gIR0CrcJlLnLaFdX2UKGgGR0CfKV4NZvDQaAdN6ANoCEdAq3HS4tpVTHV9lChoBkdAn+NQ7PppvmgHTegDaAhHQKt2AJvYODt1fZQoaAZHQKCMIUA1ejVoB03oA2gIR0CrfNVEd/8VdX2UKGgGR0CgOwicf/3naAdN6ANoCEdAq33v/R3NcHV9lChoBkdAnb9h2OhkAmgHTegDaAhHQKt/rxrBTGZ1fZQoaAZHQJ/W3Dm8ujBoB03oA2gIR0CrhWdalk6LdX2UKGgGR0CdM5rq+rU9aAdN6ANoCEdAq4tzg/C66XV9lChoBkdAn1ifO6d1+2gHTegDaAhHQKuMNqzJIUd1fZQoaAZHQJ5E3VpbliloB03oA2gIR0CrjXPppvgndX2UKGgGR0CbF7xvNu+AaAdN6ANoCEdAq5FrbvgFYHV9lChoBkdAmEjP863iJmgHTegDaAhHQKuXk0LMLWt1fZQoaAZHQJkq8Q/X5FhoB03oA2gIR0CrmFd6sySFdX2UKGgGR0CL4zxlxwQ2aAdN6ANoCEdAq5nY5tFa0XV9lChoBkdAmOhrRa5f+mgHTegDaAhHQKuf3vFWGRF1fZQoaAZHQJwra7+T/yZoB03oA2gIR0CrpwbtJFspdX2UKGgGR0CaOfnWrfcfaAdN6ANoCEdAq6fMKPXCj3V9lChoBkdAmwC5RTCLuWgHTegDaAhHQKupAdZq20B1fZQoaAZHQJtNF+PRzBBoB03oA2gIR0CrrPoCdSVGdX2UKGgGR0CaUtP1tfoiaAdN6ANoCEdAq7Mn1lGwzXV9lChoBkdAmyZEaZQYUGgHTegDaAhHQKuz8F9roGJ1fZQoaAZHQJgOfYUWVNZoB03oA2gIR0CrtRkpZwGXdX2UKGgGR0CaaeIiC8ODaAdN6ANoCEdAq7oAysS00HV9lChoBkdAmg2Lt3OfNGgHTegDaAhHQKvCY2RaHKx1fZQoaAZHQJoYt2TxG2FoB03oA2gIR0CrwzIqLCN0dX2UKGgGR0CZ8TYRujynaAdN6ANoCEdAq8RXsqril3V9lChoBkdAmtTfbfxc3WgHTegDaAhHQKvIRspobn51fZQoaAZHQJiUKWJJoTRoB03oA2gIR0CrzoUwSJ0odX2UKGgGR0CZQOMWXTmXaAdN6ANoCEdAq89SS3b213V9lChoBkdAmnh1vybx3GgHTegDaAhHQKvQcJswco91fZQoaAZHQJVRPyDqW1NoB03oA2gIR0Cr1GGtp22YdX2UKGgGR0CYKRVf/m1ZaAdN6ANoCEdAq910g2ZRbnV9lChoBkdAmbYMHWz4UWgHTegDaAhHQKvesnOSntR1fZQoaAZHQJgsh9oexOdoB03oA2gIR0Cr397y6MBIdX2UKGgGR0CYKH3+MqBmaAdN6ANoCEdAq+PWmR/3FnV9lChoBkdAmksP3SKFZmgHTegDaAhHQKvp6HpKSPl1fZQoaAZHQJufpXCCSRtoB03oA2gIR0Cr6ql6Rhc8dX2UKGgGR0CZ+cKcNH6NaAdN6ANoCEdAq+vN6/qPfnV9lChoBkdAnQQKAWi1zGgHTegDaAhHQKvvrMUypJh1fZQoaAZHQJyF2VPepGZoB03oA2gIR0Cr9zkUbkwOdX2UKGgGR0CbfKl7dBSlaAdN6ANoCEdAq/hwtQKrrHV9lChoBkdAnM/PoFFDv2gHTegDaAhHQKv6Ui9qUNd1fZQoaAZHQJ48VyCFsYVoB03oA2gIR0Cr/zjtG/etdX2UKGgGR0CeNM4zabnYaAdN6ANoCEdArAVoBkqc3HV9lChoBkdAm70zGkvboWgHTegDaAhHQKwGPjvNNah1fZQoaAZHQJ0OgewLVnVoB03oA2gIR0CsB3yI55qudX2UKGgGR0CbO3E5hjOLaAdN6ANoCEdArAt98kUsWnV9lChoBkdAm76Y9kjHGWgHTegDaAhHQKwSNsQd0aJ1fZQoaAZHQJ2FSrn1WbRoB03oA2gIR0CsE2OuzQeFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d34b063b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d34b06440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d34b064d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d34b06560>", "_build": "<function ActorCriticPolicy._build at 0x7f0d34b065f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0d34b06680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d34b06710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d34b067a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0d34b06830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d34b068c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d34b06950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d34b069e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0d34af3cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683645729204772775, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABuYWz9emok/aNARv4KdQECtd8c/chgGPs2hMz8J8KW/a074Prciiz7/laY8czVzvCOAUL/8NjJAt254Pn2PnD6fbAc/Mi06P3fPfD9MWro/dGPrPx40mjt0iLo/0AMrPz26IMBwjKE+X7SDPtpQwT5x1FM/1czBP3Eaq7+EX2g/NBxhQPaWdsBU7/y94rJ2v7Xjtb5CJTs/O/YyP8Hmf0CsoUk/iZADwPCsKT8Hb5pAo3S7PwrwTj06bSa+774fvhn32jy4igDAfX+4PxUVjMA9uiDAN9ZKwF+0gz7aUME+udprPx75hj9gJAq/WIdvP/XVMEC4/bW+doLqPiUJz7/RXRQ/ojeBu8C70D9jW4Y/JWElPlFb3r/Zfjg/fdB8vpdnZj9TPEPAXTRLPxInoD+UYx0+5XhEQKrEYb9ITli8ft/LPnCMoT6ZzHjAR4EpwN/WT767ovM/qJARwHQAFb+sYpW+aJIDPu47lT5xRpW9rwBEvuxht71t/JM8XY2/vM0bs78GwyS9PUCuPvTcWTyS6hu/wPUZPV16BD/KUSw9sntgv56KCD0fOUy+BLeFvX7fyz5wjKE+X7SDPtpQwT6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADwpy21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvAuVvQAAAABFZva/AAAAAMoW0b0AAAAA4pL/PwAAAAAMYaO8AAAAAAN1/j8AAAAAJdyPvAAAAAAwOQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUl6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEScAT0AAAAA/5PyvwAAAAAfGwg9AAAAANah9j8AAAAAkA/EPQAAAADxKPc/AAAAAKNsib0AAAAArFPqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABurjTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICk9V27AAAAANZg7L8AAAAAEilwPQAAAAD5I+U/AAAAAK2qBz4AAAAATaLcPwAAAAALrbQ7AAAAAHQO3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/Ov21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9mrlPAAAAAD8qeK/AAAAAEcL1L0AAAAA4MHrPwAAAAD8KZ09AAAAAF6a6j8AAAAAMLPlPAAAAABK++K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaY6EJ0GNeMAWyUTegDjAF0lEdAqv5KiM5wO3V9lChoBkdAiwoY7aIvamgHTegDaAhHQKr+oMOwxFl1fZQoaAZHQJQTjtE5QxhoB03oA2gIR0CrAU8ujASGdX2UKGgGR0CV5sYzSCvpaAdN6ANoCEdAqwVlD6WPcXV9lChoBkdAlJ4z/ACW/2gHTegDaAhHQKsLW85CF9N1fZQoaAZHQJX9XUG3WnVoB03oA2gIR0CrC9tl7MPjdX2UKGgGR0CVpzzyjHn2aAdN6ANoCEdAqw/gNNJvpHV9lChoBkdAlTC0Dp1RtWgHTegDaAhHQKsUr3K0UoN1fZQoaAZHQJROkwaisXBoB03oA2gIR0CrGchas6q9dX2UKGgGR0CW1pd4VymzaAdN6ANoCEdAqxoe8AaNuXV9lChoBkdAkyaQqVhTfmgHTegDaAhHQKscmd92HL11fZQoaAZHQJZFmUVzp5hoB03oA2gIR0CrIMrpJPIodX2UKGgGR0CXBljmjj7zaAdN6ANoCEdAqyYNhd+ocnV9lChoBkdAliablmvnsGgHTegDaAhHQKsmk41gpjN1fZQoaAZHQJUiCmzjWCpoB03oA2gIR0CrKozQVsUJdX2UKGgGR0CT/pwPAfuDaAdN6ANoCEdAqzA9TR6WxHV9lChoBkdAlUx4ToMa0mgHTegDaAhHQKs1Z5C4SYh1fZQoaAZHQItonaURnOBoB03oA2gIR0CrNcGZE2HddX2UKGgGR0CWRwFId2gWaAdN6ANoCEdAqzhREH+qBHV9lChoBkdAlngAkka/AWgHTegDaAhHQKs8xX5nDix1fZQoaAZHQItND+vQnhNoB03oA2gIR0CrQisyrPt2dX2UKGgGR0CU1CI9kjHGaAdN6ANoCEdAq0KGDvmYB3V9lChoBkdAloO8KCxu9GgHTegDaAhHQKtGSYYzi0h1fZQoaAZHQJXfH0th/iJoB03oA2gIR0CrTFQhOgxrdX2UKGgGR0CWkmmAbyYpaAdN6ANoCEdAq1FTM7lq8HV9lChoBkdAljHtn9NvfmgHTegDaAhHQKtRp4+KTB91fZQoaAZHQJQsx9jPOY9oB03oA2gIR0CrVCRlYlpodX2UKGgGR0CVfvu9eyAyaAdN6ANoCEdAq1hRC6YmcHV9lChoBkdAl0FNtVJcxGgHTegDaAhHQKtdXiTdLxt1fZQoaAZHQJYEGy/sVtZoB03oA2gIR0CrXbJI1+AmdX2UKGgGR0CVzwK9f1HwaAdN6ANoCEdAq2CbL2YfGXV9lChoBkdAlptRiG34K2gHTegDaAhHQKtnKXF98Z11fZQoaAZHQJZWUmiQDFJoB03oA2gIR0CrbOkSmIj4dX2UKGgGR0CMmH/bTMJQaAdN6ANoCEdAq21BSLqD9XV9lChoBkdAlsFdJOFg2WgHTegDaAhHQKtvyA2hqTN1fZQoaAZHQJRKTCSA6MloB03oA2gIR0Crc/lEZzgddX2UKGgGR0CVQ5uwHJLeaAdN6ANoCEdAq3leuA7Pp3V9lChoBkdAla5Yr8R+SmgHTegDaAhHQKt5u70WdmR1fZQoaAZHQJYYtAC4jKRoB03oA2gIR0CrfFKUu+RHdX2UKGgGR0CQlpQJHAh0aAdN6ANoCEdAq4KPO2RaHXV9lChoBkdAlic01AJLNGgHTegDaAhHQKuIvZIQOFx1fZQoaAZHQJVrJdD6WPdoB03oA2gIR0CriRNMoMKDdX2UKGgGR0CTJuF2FFlTaAdN6ANoCEdAq4udFrl/6XV9lChoBkdAlHurteD3/WgHTegDaAhHQKuP5HaN+9d1fZQoaAZHQJYD0j6eoUBoB03oA2gIR0CrlQvYODradX2UKGgGR0CVfn1mapgkaAdN6ANoCEdAq5Vi4c3l0nV9lChoBkdAkpvx+SbH62gHTegDaAhHQKuX/y6MBIZ1fZQoaAZHQJWTIUXYUWVoB03oA2gIR0CrnY2fTTfBdX2UKGgGR0CU/cZbY9PlaAdN6ANoCEdAq6SPJtBOYnV9lChoBkdAjNuuYQarFWgHTegDaAhHQKuk5QJokAx1fZQoaAZHQJY56c2BJ7NoB03oA2gIR0Crp2VeruIAdX2UKGgGR0CTjUI2OyVwaAdN6ANoCEdAq6uJTER8MXV9lChoBkdAlWBL6P8ye2gHTegDaAhHQKuwsqXF98Z1fZQoaAZHQJXsCXD3ueBoB03oA2gIR0CrsQYlIEr5dX2UKGgGR0CQ6AEX+ERKaAdN6ANoCEdAq7OEYfnwHHV9lChoBkdAlGkE9+w1SGgHTegDaAhHQKu43BX0Xgt1fZQoaAZHQJTW0FLWZqpoB03oA2gIR0CrwH1iF0xNdX2UKGgGR0CVBORe1KGtaAdN6ANoCEdAq8DVy7wrlXV9lChoBkdAlgJftx+8XmgHTegDaAhHQKvDasaKk2x1fZQoaAZHQJTJPH5rP+poB03oA2gIR0Crx71WCEpRdX2UKGgGR0CVMP5S3solaAdN6ANoCEdAq8z6k690zXV9lChoBkdAk4YhTKkl/2gHTegDaAhHQKvNUGZ/kNp1fZQoaAZHQJTWj3VTaTRoB03oA2gIR0Crz+KnWJ7+dX2UKGgGR0CWXkVW0Z3taAdN6ANoCEdAq9SN4NZvDXV9lChoBkdAliLF2zOX3WgHTegDaAhHQKvchybx3FF1fZQoaAZHQJXXLtu1ndxoB03oA2gIR0Cr3Oa4+bExdX2UKGgGR0CW4goUzsQeaAdN6ANoCEdAq9+GFDfFaXV9lChoBkdAla3Ae/5+IGgHTegDaAhHQKvjvn27FsJ1fZQoaAZHQJVndubZvk1oB03oA2gIR0Cr6Nuf/WDpdX2UKGgGR0CTY90KZ2IPaAdN6ANoCEdAq+kxCfHxSnV9lChoBkdAlGZMqBmPHWgHTegDaAhHQKvr2IVuaWp1fZQoaAZHQJPBalyimEZoB03oA2gIR0Cr8AtrKvFFdX2UKGgGR0CV7uqxC6YmaAdN6ANoCEdAq/fujsUqQXV9lChoBkdAlHj4GY8dP2gHTegDaAhHQKv4chdt2s91fZQoaAZHQJNwdBt1p0xoB03oA2gIR0Cr+4Qn6VMVdX2UKGgGR0CU9PEJBw+/aAdN6ANoCEdAq//NfReC1HV9lChoBkdAk9usGPgeimgHTegDaAhHQKwE810DEFZ1fZQoaAZHQJP2ORSxZ+xoB03oA2gIR0CsBUfk3juKdX2UKGgGR0CR1ehnJ1aGaAdN6ANoCEdArAfTLbHp8nV9lChoBkdAlHX9D6WPcWgHTegDaAhHQKwMAEhaC+V1fZQoaAZHQJIt60/nnuBoB03oA2gIR0CsEuMGorFwdX2UKGgGR0CTEGoR7JGOaAdN6ANoCEdArBNmJFb3XnV9lChoBkdAlFBrL2YfGWgHTegDaAhHQKwXQeRPoFF1fZQoaAZHQJVdfsgMc6xoB03oA2gIR0CsG2xQaaTfdX2UKGgGR0CTLvnHeaa1aAdN6ANoCEdArCCG/k/8mHV9lChoBkdAlYDS5y2hI2gHTegDaAhHQKwg35GBnSR1fZQoaAZHQJYZlQ+EAYJoB03oA2gIR0CsI2mjCYTkdX2UKGgGR0CSqszfrKNiaAdN6ANoCEdArCekbDMvAXV9lChoBkdAlUfcry1/lWgHTegDaAhHQKwto8nNPgx1fZQoaAZHQJSOZKODJ2doB03oA2gIR0CsLioaLn9vdX2UKGgGR0CVK6jRD1GtaAdN6ANoCEdArDJFcMVk+XV9lChoBkdAlMg4NAkcCGgHTegDaAhHQKw3RKXfIjp1fZQoaAZHQJMk+NvOyFBoB03oA2gIR0CsPG9SMtK7dX2UKGgGR0CVQobdrO7haAdN6ANoCEdArDzEQRPGhnV9lChoBkdAlS1FiKBNEmgHTegDaAhHQKw/T2YfGMp1fZQoaAZHQJGv9zEJjUdoB03oA2gIR0CsQ31dgOSXdX2UKGgGR0CVKPPnjhkzaAdN6ANoCEdArEjPNFBppXV9lChoBkdAlOsxZEDyOWgHTegDaAhHQKxJThfBvaV1fZQoaAZHQJUV6rjo6jpoB03oA2gIR0CsTSbwazeGdX2UKGgGR0CT4H814xDcaAdN6ANoCEdArFMOAy2x6nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f54bf505bf62cd6d56a3f69a8bd6cb703c02b929767fa5467cdcbb0bca6e3d0c
3
- size 1234953
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dec11e324343067e550c525137bfaa39ec35aa445ed3e3700f7b2368a321b818
3
+ size 1027957
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1473.1389532035914, "std_reward": 369.7523045864614, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T14:22:34.898802"}
 
1
+ {"mean_reward": 1506.4875396508723, "std_reward": 61.05608301514362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-09T16:23:35.747920"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2ba9f4554b21b62e85f4789160c78b3726cad6960d1869a3b3ed3fb6fb07c956
3
- size 2136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b33c817cd49135a3a5ac91f8735bdc79043453ceaa356b0affff6ee13b687a
3
+ size 2176