--- base_model: llava-hf/llava-v1.6-mistral-7b-hf library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: llava-1.6-7b-hf-final results: [] --- # llava-1.6-7b-hf-final This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on an derek-thomas/ScienceQA. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ## Chat Template ```python CHAT_TEMPLATE='''<> A chat between an user and an artificial intelligence assistant about Science Question Answering. The assistant gives helpful, detailed, and polite answers to the user's questions. Based on the image, question and hint, please choose one of the given choices that answer the question. Give yourself room to think by extracting the image, question and hint before choosing the choice. Don't return the thinking, only return the highest accuracy choice. Make sure your answers are as correct as possible. <> {% for tag, content in messages.items() %} {% if tag == 'real_question' %} Now use the following image and question to choose the choice: {% for message in content %} {% if message['role'] == 'user' %}[INST] USER: {% else %}ASSISTANT: {% endif %} {% for item in message['content'] %} {% if item['type'] == 'text_question' %} Question: {{ item['question'] }} {% elif item['type'] == 'text_hint' %} Hint: {{ item['hint'] }} {% elif item['type'] == 'text_choice' %} Choices: {{ item['choice'] }} [/INST] {% elif item['type'] == 'text_solution' %} Solution: {{ item['solution'] }} {% elif item['type'] == 'text_answer' %} Answer: {{ item['answer'] }}{% elif item['type'] == 'image' %} {% endif %} {% endfor %} {% if message['role'] == 'user' %} {% else %} {{eos_token}} {% endif %}{% endfor %}{% endif %} {% endfor %}''' ``` ## How to use ```python from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration import torch from PIL import Image import requests model_id = "Louisnguyen/llava-1.6-7b-hf-final" quantization_config = BitsAndBytesConfig( load_in_4bit=True, ) model = LlavaNextForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16) model.to("cuda:0") processor = LlavaNextProcessor.from_pretrained(model_id) image = example["image"] question = example["question"] choices = example["choices"] hint = example["hint"] messages_answer = { "real_question": [ { "role": "user", "content": [ {"type": "image"}, {"type": "text_question", "question": question}, {"type": "text_hint", "hint": hint}, {"type": "text_choice", "choice": ' or '.join(choices)}, ] } ] } # Apply the chat template to format the messages for answer generation text_answer = processor.tokenizer.apply_chat_template(messages_answer, tokenize=False, add_generation_prompt=True) # Prepare the inputs for the model to generate the answer inputs_answer = processor(text=[text_answer.strip()], images=image, return_tensors="pt", padding=True).to('cuda') # Generate text using the model for the answer generated_ids_answer = model.generate(**inputs_answer, max_new_tokens=1024, pad_token_id=tokenizer.eos_token_id) # Decode the generated text for the answer generated_texts_answer = processor.batch_decode(generated_ids_answer[:, inputs_answer["input_ids"].size(1):], skip_special_tokens=True) print(generated_texts_answer) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results Accuracy ~80% ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1