--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - generated_from_trainer model-index: - name: Phi0503HMA10 results: [] --- # Phi0503HMA10 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3726 | 0.09 | 10 | 1.2275 | | 0.6273 | 0.18 | 20 | 0.3121 | | 0.5505 | 0.27 | 30 | 0.2639 | | 0.2708 | 0.36 | 40 | 0.2764 | | 0.2706 | 0.45 | 50 | 0.2277 | | 0.229 | 0.54 | 60 | 0.2141 | | 0.2219 | 0.63 | 70 | 0.1942 | | 0.2033 | 0.73 | 80 | 0.1793 | | 0.1404 | 0.82 | 90 | 0.1439 | | 0.1517 | 0.91 | 100 | 0.1780 | | 0.1616 | 1.0 | 110 | 0.1160 | | 0.2341 | 1.09 | 120 | 0.1881 | | 0.7248 | 1.18 | 130 | 0.7271 | | 1.6046 | 1.27 | 140 | 0.6889 | | 0.7782 | 1.36 | 150 | 0.3543 | | 0.3641 | 1.45 | 160 | 0.3444 | | 0.2674 | 1.54 | 170 | 0.2626 | | 0.2036 | 1.63 | 180 | 0.1684 | | 0.1562 | 1.72 | 190 | 0.1432 | | 0.1498 | 1.81 | 200 | 0.1364 | | 0.1399 | 1.9 | 210 | 0.1320 | | 0.1269 | 1.99 | 220 | 0.1328 | | 0.1282 | 2.08 | 230 | 0.1050 | | 0.1048 | 2.18 | 240 | 0.0906 | | 0.0932 | 2.27 | 250 | 0.0730 | | 0.0792 | 2.36 | 260 | 0.0679 | | 0.0737 | 2.45 | 270 | 0.0693 | | 0.0772 | 2.54 | 280 | 0.0679 | | 0.0794 | 2.63 | 290 | 0.0698 | | 0.0743 | 2.72 | 300 | 0.0672 | | 0.0766 | 2.81 | 310 | 0.0670 | | 0.0751 | 2.9 | 320 | 0.0674 | | 0.0655 | 2.99 | 330 | 0.0671 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.0