--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6973 - Answer: {'precision': 0.8658109684947491, 'recall': 0.9082007343941249, 'f1': 0.886499402628435, 'number': 817} - Header: {'precision': 0.6770833333333334, 'recall': 0.5462184873949579, 'f1': 0.6046511627906976, 'number': 119} - Question: {'precision': 0.9074243813015582, 'recall': 0.9192200557103064, 'f1': 0.9132841328413284, 'number': 1077} - Overall Precision: 0.8792 - Overall Recall: 0.8927 - Overall F1: 0.8859 - Overall Accuracy: 0.8011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1857 | 26.32 | 500 | 1.4181 | {'precision': 0.8298109010011123, 'recall': 0.9130966952264382, 'f1': 0.8694638694638694, 'number': 817} | {'precision': 0.6923076923076923, 'recall': 0.5294117647058824, 'f1': 0.5999999999999999, 'number': 119} | {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077} | 0.8538 | 0.8877 | 0.8704 | 0.7981 | | 0.0068 | 52.63 | 1000 | 1.6084 | {'precision': 0.8581235697940504, 'recall': 0.9179926560587516, 'f1': 0.8870490833826139, 'number': 817} | {'precision': 0.5877192982456141, 'recall': 0.5630252100840336, 'f1': 0.5751072961373391, 'number': 119} | {'precision': 0.9083255378858747, 'recall': 0.9015784586815228, 'f1': 0.9049394221808015, 'number': 1077} | 0.8692 | 0.8882 | 0.8786 | 0.7956 | | 0.0018 | 78.95 | 1500 | 1.6068 | {'precision': 0.8742655699177438, 'recall': 0.9106487148102815, 'f1': 0.8920863309352519, 'number': 817} | {'precision': 0.6050420168067226, 'recall': 0.6050420168067226, 'f1': 0.6050420168067226, 'number': 119} | {'precision': 0.902867715078631, 'recall': 0.9062209842154132, 'f1': 0.9045412418906396, 'number': 1077} | 0.8737 | 0.8902 | 0.8819 | 0.8095 | | 0.0007 | 105.26 | 2000 | 1.6522 | {'precision': 0.8611111111111112, 'recall': 0.9106487148102815, 'f1': 0.8851873884592504, 'number': 817} | {'precision': 0.6126126126126126, 'recall': 0.5714285714285714, 'f1': 0.591304347826087, 'number': 119} | {'precision': 0.9098513011152416, 'recall': 0.9090064995357474, 'f1': 0.9094287041337669, 'number': 1077} | 0.8732 | 0.8897 | 0.8814 | 0.8028 | | 0.0002 | 131.58 | 2500 | 1.6973 | {'precision': 0.8658109684947491, 'recall': 0.9082007343941249, 'f1': 0.886499402628435, 'number': 817} | {'precision': 0.6770833333333334, 'recall': 0.5462184873949579, 'f1': 0.6046511627906976, 'number': 119} | {'precision': 0.9074243813015582, 'recall': 0.9192200557103064, 'f1': 0.9132841328413284, 'number': 1077} | 0.8792 | 0.8927 | 0.8859 | 0.8011 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0