--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_B09 results: [] --- # BERT_B09 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2572 - Precision: 0.6376 - Recall: 0.6753 - F1: 0.6559 - Accuracy: 0.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.001 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4255 | 1.0 | 46 | 0.3653 | 0.4807 | 0.5043 | 0.4922 | 0.9019 | | 0.2621 | 2.0 | 92 | 0.2719 | 0.6056 | 0.6101 | 0.6078 | 0.9227 | | 0.1642 | 3.0 | 138 | 0.2659 | 0.6047 | 0.6605 | 0.6314 | 0.9246 | | 0.1249 | 4.0 | 184 | 0.2580 | 0.6382 | 0.6617 | 0.6498 | 0.9299 | | 0.1232 | 5.0 | 230 | 0.2572 | 0.6376 | 0.6753 | 0.6559 | 0.9287 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3