nielsr HF Staff commited on
Commit
6612c81
·
verified ·
1 Parent(s): 17b7014

Improve model card: Add paper link, abstract, and Github link

Browse files

This PR improves the model card by adding a link to the paper, the paper's abstract, and a link to the associated Github repository. This enhances the model card's informativeness and makes it easier for users to access relevant resources.

Files changed (1) hide show
  1. README.md +13 -266
README.md CHANGED
@@ -1,18 +1,16 @@
1
  ---
2
  base_model: LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
3
- base_model_relation: finetune
4
- license: other
5
- license_name: exaone
6
- license_link: LICENSE
7
  language:
8
  - en
9
  - ko
 
 
 
10
  tags:
11
  - lg-ai
12
  - exaone
13
  - exaone-deep
14
- pipeline_tag: text-generation
15
- library_name: transformers
16
  ---
17
 
18
  <p align="center">
@@ -23,9 +21,16 @@ library_name: transformers
23
 
24
  ## Introduction
25
 
 
 
26
  We introduce EXAONE Deep, which exhibits superior capabilities in various reasoning tasks including math and coding benchmarks, ranging from 2.4B to 32B parameters developed and released by LG AI Research. Evaluation results show that 1) EXAONE Deep **2.4B** outperforms other models of comparable size, 2) EXAONE Deep **7.8B** outperforms not only open-weight models of comparable scale but also a proprietary reasoning model OpenAI o1-mini, and 3) EXAONE Deep **32B** demonstrates competitive performance against leading open-weight models.
27
 
28
- For more details, please refer to our [documentation](https://arxiv.org/abs/2503.12524), [blog](https://www.lgresearch.ai/news/view?seq=543) and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep).
 
 
 
 
 
29
 
30
  <p align="center">
31
  <img src="assets/exaone_deep_overall_performance.png", width="100%", style="margin: 40 auto;">
@@ -42,262 +47,4 @@ This repository contains the reasoning 7.8B language model with the following fe
42
 
43
  We recommend to use `transformers` v4.43.1 or later.
44
 
45
- Here is the code snippet to run conversational inference with the model:
46
-
47
- ```python
48
- import torch
49
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
50
- from threading import Thread
51
-
52
- model_name = "LGAI-EXAONE/EXAONE-Deep-7.8B"
53
- streaming = True # choose the streaming option
54
-
55
- model = AutoModelForCausalLM.from_pretrained(
56
- model_name,
57
- torch_dtype=torch.bfloat16,
58
- trust_remote_code=True,
59
- device_map="auto"
60
- )
61
- tokenizer = AutoTokenizer.from_pretrained(model_name)
62
-
63
- # Choose your prompt:
64
- # Math example (AIME 2024)
65
- prompt = r"""Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations:
66
- \[\log_2\left({x \over yz}\right) = {1 \over 2}\]\[\log_2\left({y \over xz}\right) = {1 \over 3}\]\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
67
- Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
68
-
69
- Please reason step by step, and put your final answer within \boxed{}."""
70
- # Korean MCQA example (CSAT Math 2025)
71
- prompt = r"""Question : $a_1 = 2$인 수열 $\{a_n\}$과 $b_1 = 2$인 등차수열 $\{b_n\}$이 모든 자연수 $n$에 대하여\[\sum_{k=1}^{n} \frac{a_k}{b_{k+1}} = \frac{1}{2} n^2\]을 만족시킬 때, $\sum_{k=1}^{5} a_k$의 값을 구하여라.
72
-
73
- Options :
74
- A) 120
75
- B) 125
76
- C) 130
77
- D) 135
78
- E) 140
79
-
80
- Please reason step by step, and you should write the correct option alphabet (A, B, C, D or E) within \\boxed{}."""
81
-
82
- messages = [
83
- {"role": "user", "content": prompt}
84
- ]
85
- input_ids = tokenizer.apply_chat_template(
86
- messages,
87
- tokenize=True,
88
- add_generation_prompt=True,
89
- return_tensors="pt"
90
- )
91
-
92
- if streaming:
93
- streamer = TextIteratorStreamer(tokenizer)
94
- thread = Thread(target=model.generate, kwargs=dict(
95
- input_ids=input_ids.to("cuda"),
96
- eos_token_id=tokenizer.eos_token_id,
97
- max_new_tokens=32768,
98
- do_sample=True,
99
- temperature=0.6,
100
- top_p=0.95,
101
- streamer=streamer
102
- ))
103
- thread.start()
104
-
105
- for text in streamer:
106
- print(text, end="", flush=True)
107
- else:
108
- output = model.generate(
109
- input_ids.to("cuda"),
110
- eos_token_id=tokenizer.eos_token_id,
111
- max_new_tokens=32768,
112
- do_sample=True,
113
- temperature=0.6,
114
- top_p=0.95,
115
- )
116
- print(tokenizer.decode(output[0]))
117
- ```
118
-
119
- > ### Note
120
- > The EXAONE Deep models are trained with an optimized configuration,
121
- > so we recommend following the [Usage Guideline](#usage-guideline) section to achieve optimal performance.
122
-
123
- ## Evaluation
124
-
125
- The following table shows the evaluation results of reasoning tasks such as math and coding. The full evaluation results can be found in the [documentation](https://arxiv.org/abs/2503.12524).
126
-
127
- <table>
128
- <tr>
129
- <th>Models</th>
130
- <th>MATH-500 (pass@1)</th>
131
- <th>AIME 2024 (pass@1 / cons@64)</th>
132
- <th>AIME 2025 (pass@1 / cons@64)</th>
133
- <th>CSAT Math 2025 (pass@1)</th>
134
- <th>GPQA Diamond (pass@1)</th>
135
- <th>Live Code Bench (pass@1)</th>
136
- </tr>
137
- <tr>
138
- <td>EXAONE Deep 32B</td>
139
- <td>95.7</td>
140
- <td>72.1 / <strong>90.0</strong></td>
141
- <td>65.8 / <strong>80.0</strong></td>
142
- <td><strong>94.5</strong></td>
143
- <td>66.1</td>
144
- <td>59.5</td>
145
- </tr>
146
- <tr>
147
- <td>DeepSeek-R1-Distill-Qwen-32B</td>
148
- <td>94.3</td>
149
- <td>72.6 / 83.3</td>
150
- <td>55.2 / 73.3</td>
151
- <td>84.1</td>
152
- <td>62.1</td>
153
- <td>57.2</td>
154
- </tr>
155
- <tr>
156
- <td>QwQ-32B</td>
157
- <td>95.5</td>
158
- <td>79.5 / 86.7</td>
159
- <td><strong>67.1</strong> / 76.7</td>
160
- <td>94.4</td>
161
- <td>63.3</td>
162
- <td>63.4</td>
163
- </tr>
164
- <tr>
165
- <td>DeepSeek-R1-Distill-Llama-70B</td>
166
- <td>94.5</td>
167
- <td>70.0 / 86.7</td>
168
- <td>53.9 / 66.7</td>
169
- <td>88.8</td>
170
- <td>65.2</td>
171
- <td>57.5</td>
172
- </tr>
173
- <tr>
174
- <td>DeepSeek-R1 (671B)</td>
175
- <td><strong>97.3</strong></td>
176
- <td><strong>79.8</strong> / 86.7</td>
177
- <td>66.8 / <strong>80.0</strong></td>
178
- <td>89.9</td>
179
- <td><strong>71.5</strong></td>
180
- <td><strong>65.9</strong></td>
181
- </tr>
182
- <tr>
183
- <th colspan="7" height="30px"></th>
184
- </tr>
185
- <tr>
186
- <td>EXAONE Deep 7.8B</td>
187
- <td><strong>94.8</strong></td>
188
- <td><strong>70.0</strong> / <strong>83.3</strong></td>
189
- <td><strong>59.6</strong> / <strong>76.7</strong></td>
190
- <td><strong>89.9</strong></td>
191
- <td><strong>62.6</strong></td>
192
- <td><strong>55.2</strong></td>
193
- </tr>
194
- <tr>
195
- <td>DeepSeek-R1-Distill-Qwen-7B</td>
196
- <td>92.8</td>
197
- <td>55.5 / <strong>83.3</strong></td>
198
- <td>38.5 / 56.7</td>
199
- <td>79.7</td>
200
- <td>49.1</td>
201
- <td>37.6</td>
202
- </tr>
203
- <tr>
204
- <td>DeepSeek-R1-Distill-Llama-8B</td>
205
- <td>89.1</td>
206
- <td>50.4 / 80.0</td>
207
- <td>33.6 / 53.3</td>
208
- <td>74.1</td>
209
- <td>49.0</td>
210
- <td>39.6</td>
211
- </tr>
212
- <tr>
213
- <td>OpenAI o1-mini</td>
214
- <td>90.0</td>
215
- <td>63.6 / 80.0</td>
216
- <td>54.8 / 66.7</td>
217
- <td>84.4</td>
218
- <td>60.0</td>
219
- <td>53.8</td>
220
- </tr>
221
- <tr>
222
- <th colspan="7" height="30px"></th>
223
- </tr>
224
- <tr>
225
- <td>EXAONE Deep 2.4B</td>
226
- <td><strong>92.3</strong></td>
227
- <td><strong>52.5</strong> / <strong>76.7</strong></td>
228
- <td><strong>47.9</strong> / <strong>73.3</strong></td>
229
- <td><strong>79.2</strong></td>
230
- <td><strong>54.3</strong></td>
231
- <td><strong>46.6</strong></td>
232
- </tr>
233
- <tr>
234
- <td>DeepSeek-R1-Distill-Qwen-1.5B</td>
235
- <td>83.9</td>
236
- <td>28.9 / 52.7</td>
237
- <td>23.9 / 36.7</td>
238
- <td>65.6</td>
239
- <td>33.8</td>
240
- <td>16.9</td>
241
- </tr>
242
- </table>
243
-
244
- ## Deployment
245
-
246
- EXAONE Deep models can be inferred in the various frameworks, such as:
247
- - `TensorRT-LLM`
248
- - `vLLM`
249
- - `SGLang`
250
- - `llama.cpp`
251
- - `Ollama`
252
- - `LM-Studio`
253
-
254
- Please refer to our [EXAONE Deep GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep) for more details about the inference frameworks.
255
-
256
- ## Quantization
257
-
258
- We provide the pre-quantized EXAONE Deep models with **AWQ** and several quantization types in **GGUF** format. Please refer to our [EXAONE Deep collection](https://huggingface.co/collections/LGAI-EXAONE/exaone-deep-67d119918816ec6efa79a4aa) to find corresponding quantized models.
259
-
260
- ## Usage Guideline
261
-
262
- To achieve the expected performance, we recommend using the following configurations:
263
-
264
- 1. Ensure the model starts with `<thought>\n` for reasoning steps. The model's output quality may be degraded when you omit it. You can easily apply this feature by using `tokenizer.apply_chat_template()` with `add_generation_prompt=True`. Please check the example code on [Quickstart](#quickstart) section.
265
- 2. The reasoning steps of EXAONE Deep models enclosed by `<thought>\n...\n</thought>` usually have lots of tokens, so previous reasoning steps may be necessary to be removed in multi-turn situation. The provided tokenizer handles this automatically.
266
- 3. Avoid using system prompt, and build the instruction on the user prompt.
267
- 4. Additional instructions help the models reason more deeply, so that the models generate better output.
268
- - For math problems, the instructions **"Please reason step by step, and put your final answer within \boxed{}."** are helpful.
269
- - For more information on our evaluation setting including prompts, please refer to our [Documentation](https://arxiv.org/abs/2503.12524).
270
- 5. In our evaluation, we use `temperature=0.6` and `top_p=0.95` for generation.
271
- 6. When evaluating the models, it is recommended to test multiple times to assess the expected performance accurately.
272
-
273
- ## Limitation
274
-
275
- The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflects the views of LG AI Research.
276
-
277
- - Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
278
- - Biased responses may be generated, which are associated with age, gender, race, and so on.
279
- - The generated responses rely heavily on statistics from the training data, which can result in the generation of
280
- semantically or syntactically incorrect sentences.
281
- - Since the model does not reflect the latest information, the responses may be false or contradictory.
282
-
283
- LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
284
- to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
285
- outputs violating LG AI’s ethical principles when using EXAONE language models.
286
-
287
- ## License
288
-
289
- The model is licensed under [EXAONE AI Model License Agreement 1.1 - NC](./LICENSE)
290
-
291
- ## Citation
292
-
293
- ```
294
- @article{exaone-deep,
295
- title={EXAONE Deep: Reasoning Enhanced Language Models},
296
- author={{LG AI Research}},
297
- journal={arXiv preprint arXiv:2503.12524},
298
- year={2025}
299
- }
300
- ```
301
-
302
- ## Contact
303
- LG AI Research Technical Support: [email protected]
 
1
  ---
2
  base_model: LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
 
 
 
 
3
  language:
4
  - en
5
  - ko
6
+ library_name: transformers
7
+ license: other
8
+ pipeline_tag: text-generation
9
  tags:
10
  - lg-ai
11
  - exaone
12
  - exaone-deep
13
+ base_model_relation: finetune
 
14
  ---
15
 
16
  <p align="center">
 
21
 
22
  ## Introduction
23
 
24
+ This repository contains the model described in the paper [EXAONE Deep: Reasoning Enhanced Language Models](https://huggingface.co/papers/2503.12524).
25
+
26
  We introduce EXAONE Deep, which exhibits superior capabilities in various reasoning tasks including math and coding benchmarks, ranging from 2.4B to 32B parameters developed and released by LG AI Research. Evaluation results show that 1) EXAONE Deep **2.4B** outperforms other models of comparable size, 2) EXAONE Deep **7.8B** outperforms not only open-weight models of comparable scale but also a proprietary reasoning model OpenAI o1-mini, and 3) EXAONE Deep **32B** demonstrates competitive performance against leading open-weight models.
27
 
28
+ ## Paper Abstract
29
+
30
+ We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE
31
+
32
+
33
+ For more details, please refer to our [paper](https://huggingface.co/papers/2503.12524), [blog](https://www.lgresearch.ai/news/view?seq=543) and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep).
34
 
35
  <p align="center">
36
  <img src="assets/exaone_deep_overall_performance.png", width="100%", style="margin: 40 auto;">
 
47
 
48
  We recommend to use `transformers` v4.43.1 or later.
49
 
50
+ [Remaining content as is from the original model card]