from typing import Dict, List, Any from transformers import pipeline, AutoTokenizer, BartForConditionalGeneration class EndpointHandler(): def __init__(self, path=""): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' try: self.model = BartForConditionalGeneration.from_pretrained(path).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(path) except Exception as e: print(f"Error loading model or tokenizer from path {path}: {e}") def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str`) date (:obj: `str`) Return: A :obj:`list` | `dict`: will be serialized and returned """ # get inputs inputs = data.get("inputs", "") if not inputs: return [{"error": "No inputs provided"}] tokenized_input = self.tokenizer(inputs, return_tensors="pt", truncation=True, max_length=1024, padding="max_length") tokenized_input = tokenized_input.to(self.device) # Move input tensors to the same device as model summary_ids = self.model.generate(**tokenized_input, max_length=256, do_sample=True, top_p=0.8) summary_text = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return [{"summary": summary_text}]