File size: 12,657 Bytes
e40e11f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
model-index:
- name: wav2vec2-large-mms-1b-zh-CN
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-mms-1b-zh-CN

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9552
- Cer: 0.2071

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 42.0738       | 0.04  | 100   | 2.9914          | 0.4865 |
| 2.534         | 0.09  | 200   | 2.0714          | 0.3981 |
| 2.0311        | 0.13  | 300   | 1.9086          | 0.3844 |
| 1.9237        | 0.17  | 400   | 1.7770          | 0.3650 |
| 1.865         | 0.22  | 500   | 1.6745          | 0.3579 |
| 1.8275        | 0.26  | 600   | 1.6277          | 0.3414 |
| 1.8094        | 0.3   | 700   | 1.6812          | 0.3639 |
| 1.7503        | 0.35  | 800   | 1.6279          | 0.3427 |
| 1.7448        | 0.39  | 900   | 1.5611          | 0.3376 |
| 1.7459        | 0.43  | 1000  | 1.5413          | 0.3323 |
| 1.7191        | 0.47  | 1100  | 1.5259          | 0.3280 |
| 1.6317        | 0.52  | 1200  | 1.5102          | 0.3242 |
| 1.6881        | 0.56  | 1300  | 1.4851          | 0.3212 |
| 1.6401        | 0.6   | 1400  | 1.4589          | 0.3097 |
| 1.5909        | 0.65  | 1500  | 1.4985          | 0.3186 |
| 1.618         | 0.69  | 1600  | 1.4415          | 0.3122 |
| 1.6842        | 0.73  | 1700  | 1.4596          | 0.3161 |
| 1.5413        | 0.78  | 1800  | 1.4275          | 0.3003 |
| 1.6461        | 0.82  | 1900  | 1.4214          | 0.3073 |
| 1.5536        | 0.86  | 2000  | 1.3924          | 0.3003 |
| 1.545         | 0.91  | 2100  | 1.3727          | 0.2907 |
| 1.6354        | 0.95  | 2200  | 1.4157          | 0.3088 |
| 1.4913        | 0.99  | 2300  | 1.4012          | 0.3042 |
| 1.2739        | 1.04  | 2400  | 1.3079          | 0.2855 |
| 1.2292        | 1.08  | 2500  | 1.3085          | 0.2832 |
| 1.2424        | 1.12  | 2600  | 1.3273          | 0.2879 |
| 1.2181        | 1.16  | 2700  | 1.3241          | 0.2864 |
| 1.2101        | 1.21  | 2800  | 1.2526          | 0.2780 |
| 1.26          | 1.25  | 2900  | 1.2949          | 0.2815 |
| 1.2154        | 1.29  | 3000  | 1.2932          | 0.2787 |
| 1.2446        | 1.34  | 3100  | 1.2774          | 0.2792 |
| 1.1975        | 1.38  | 3200  | 1.2641          | 0.2751 |
| 1.2048        | 1.42  | 3300  | 1.2645          | 0.2773 |
| 1.1858        | 1.47  | 3400  | 1.2616          | 0.2741 |
| 1.202         | 1.51  | 3500  | 1.2572          | 0.2725 |
| 1.1802        | 1.55  | 3600  | 1.2554          | 0.2723 |
| 1.1912        | 1.6   | 3700  | 1.2703          | 0.2657 |
| 1.213         | 1.64  | 3800  | 1.2491          | 0.2743 |
| 1.1949        | 1.68  | 3900  | 1.2497          | 0.2734 |
| 1.1813        | 1.73  | 4000  | 1.2367          | 0.2709 |
| 1.1935        | 1.77  | 4100  | 1.2174          | 0.2677 |
| 1.1842        | 1.81  | 4200  | 1.2307          | 0.2660 |
| 1.215         | 1.86  | 4300  | 1.2275          | 0.2696 |
| 1.2102        | 1.9   | 4400  | 1.1964          | 0.2595 |
| 1.2206        | 1.94  | 4500  | 1.2046          | 0.2574 |
| 1.2292        | 1.98  | 4600  | 1.1900          | 0.2595 |
| 1.034         | 2.03  | 4700  | 1.1849          | 0.2547 |
| 0.8787        | 2.07  | 4800  | 1.1889          | 0.2558 |
| 0.9124        | 2.11  | 4900  | 1.1809          | 0.2590 |
| 0.9027        | 2.16  | 5000  | 1.1927          | 0.2608 |
| 0.9158        | 2.2   | 5100  | 1.1860          | 0.2556 |
| 0.8683        | 2.24  | 5200  | 1.1660          | 0.2522 |
| 0.8932        | 2.29  | 5300  | 1.1477          | 0.2533 |
| 0.9332        | 2.33  | 5400  | 1.1702          | 0.2543 |
| 0.9427        | 2.37  | 5500  | 1.1653          | 0.2523 |
| 0.9085        | 2.42  | 5600  | 1.1739          | 0.2539 |
| 0.9238        | 2.46  | 5700  | 1.2005          | 0.2589 |
| 0.9319        | 2.5   | 5800  | 1.1877          | 0.2567 |
| 0.9414        | 2.55  | 5900  | 1.1730          | 0.2505 |
| 0.9428        | 2.59  | 6000  | 1.1721          | 0.2576 |
| 0.942         | 2.63  | 6100  | 1.1793          | 0.2547 |
| 0.9273        | 2.67  | 6200  | 1.1787          | 0.2570 |
| 0.9963        | 2.72  | 6300  | 1.1570          | 0.2540 |
| 0.9519        | 2.76  | 6400  | 1.1738          | 0.2563 |
| 0.962         | 2.8   | 6500  | 1.1929          | 0.2628 |
| 0.9765        | 2.85  | 6600  | 1.1531          | 0.2527 |
| 0.9226        | 2.89  | 6700  | 1.1577          | 0.2553 |
| 0.9492        | 2.93  | 6800  | 1.1490          | 0.2506 |
| 0.9186        | 2.98  | 6900  | 1.1402          | 0.2500 |
| 0.8681        | 3.02  | 7000  | 1.1520          | 0.2516 |
| 0.7738        | 3.06  | 7100  | 1.1404          | 0.2527 |
| 0.7605        | 3.11  | 7200  | 1.1535          | 0.2514 |
| 0.7254        | 3.15  | 7300  | 1.1679          | 0.2490 |
| 0.7422        | 3.19  | 7400  | 1.1536          | 0.2502 |
| 0.823         | 3.24  | 7500  | 1.1516          | 0.2477 |
| 0.7909        | 3.28  | 7600  | 1.1442          | 0.2459 |
| 0.7748        | 3.32  | 7700  | 1.1522          | 0.2493 |
| 0.7957        | 3.36  | 7800  | 1.1383          | 0.2470 |
| 0.7383        | 3.41  | 7900  | 1.1343          | 0.2452 |
| 0.8093        | 3.45  | 8000  | 1.1426          | 0.2467 |
| 0.8141        | 3.49  | 8100  | 1.1357          | 0.2466 |
| 0.7891        | 3.54  | 8200  | 1.1552          | 0.2480 |
| 0.8246        | 3.58  | 8300  | 1.1555          | 0.2475 |
| 0.7958        | 3.62  | 8400  | 1.1615          | 0.2502 |
| 0.7721        | 3.67  | 8500  | 1.1041          | 0.2396 |
| 0.7773        | 3.71  | 8600  | 1.1215          | 0.2411 |
| 0.7847        | 3.75  | 8700  | 1.1130          | 0.2419 |
| 0.7971        | 3.8   | 8800  | 1.1056          | 0.2469 |
| 0.7801        | 3.84  | 8900  | 1.1129          | 0.2435 |
| 0.7843        | 3.88  | 9000  | 1.1027          | 0.2387 |
| 0.7842        | 3.93  | 9100  | 1.0981          | 0.2401 |
| 0.7661        | 3.97  | 9200  | 1.1060          | 0.2428 |
| 0.7622        | 4.01  | 9300  | 1.0790          | 0.2338 |
| 0.6405        | 4.06  | 9400  | 1.0871          | 0.2352 |
| 0.6102        | 4.1   | 9500  | 1.0860          | 0.2344 |
| 0.6419        | 4.14  | 9600  | 1.0782          | 0.2356 |
| 0.6058        | 4.18  | 9700  | 1.0739          | 0.2291 |
| 0.6632        | 4.23  | 9800  | 1.1008          | 0.2366 |
| 0.6373        | 4.27  | 9900  | 1.0847          | 0.2354 |
| 0.6358        | 4.31  | 10000 | 1.0722          | 0.2313 |
| 0.6531        | 4.36  | 10100 | 1.0796          | 0.2326 |
| 0.6383        | 4.4   | 10200 | 1.0736          | 0.2322 |
| 0.6537        | 4.44  | 10300 | 1.0723          | 0.2305 |
| 0.6321        | 4.49  | 10400 | 1.0703          | 0.2329 |
| 0.6683        | 4.53  | 10500 | 1.0769          | 0.2332 |
| 0.6272        | 4.57  | 10600 | 1.0555          | 0.2292 |
| 0.651         | 4.62  | 10700 | 1.0570          | 0.2323 |
| 0.6392        | 4.66  | 10800 | 1.0738          | 0.2313 |
| 0.665         | 4.7   | 10900 | 1.0536          | 0.2276 |
| 0.677         | 4.75  | 11000 | 1.0554          | 0.2277 |
| 0.6419        | 4.79  | 11100 | 1.0487          | 0.2258 |
| 0.6549        | 4.83  | 11200 | 1.0427          | 0.2287 |
| 0.6373        | 4.87  | 11300 | 1.0502          | 0.2291 |
| 0.6642        | 4.92  | 11400 | 1.0411          | 0.2255 |
| 0.6674        | 4.96  | 11500 | 1.0345          | 0.2248 |
| 0.6733        | 5.0   | 11600 | 1.0440          | 0.2278 |
| 0.5281        | 5.05  | 11700 | 1.0477          | 0.2253 |
| 0.5465        | 5.09  | 11800 | 1.0553          | 0.2284 |
| 0.5375        | 5.13  | 11900 | 1.0550          | 0.2309 |
| 0.5103        | 5.18  | 12000 | 1.0433          | 0.2237 |
| 0.5196        | 5.22  | 12100 | 1.0534          | 0.2301 |
| 0.5645        | 5.26  | 12200 | 1.0492          | 0.2278 |
| 0.5421        | 5.31  | 12300 | 1.0515          | 0.2281 |
| 0.5234        | 5.35  | 12400 | 1.0383          | 0.2229 |
| 0.571         | 5.39  | 12500 | 1.0569          | 0.2278 |
| 0.5392        | 5.44  | 12600 | 1.0469          | 0.2253 |
| 0.5867        | 5.48  | 12700 | 1.0373          | 0.2264 |
| 0.5819        | 5.52  | 12800 | 1.0164          | 0.2237 |
| 0.5504        | 5.57  | 12900 | 1.0183          | 0.2217 |
| 0.5532        | 5.61  | 13000 | 1.0167          | 0.2232 |
| 0.5575        | 5.65  | 13100 | 1.0292          | 0.2244 |
| 0.5593        | 5.69  | 13200 | 1.0368          | 0.2247 |
| 0.5498        | 5.74  | 13300 | 1.0215          | 0.2231 |
| 0.5462        | 5.78  | 13400 | 1.0330          | 0.2212 |
| 0.5751        | 5.82  | 13500 | 1.0179          | 0.2223 |
| 0.5492        | 5.87  | 13600 | 1.0224          | 0.2202 |
| 0.5746        | 5.91  | 13700 | 1.0151          | 0.2219 |
| 0.5288        | 5.95  | 13800 | 1.0154          | 0.2199 |
| 0.5614        | 6.0   | 13900 | 1.0158          | 0.2210 |
| 0.4563        | 6.04  | 14000 | 1.0120          | 0.2197 |
| 0.502         | 6.08  | 14100 | 1.0125          | 0.2201 |
| 0.4896        | 6.13  | 14200 | 1.0011          | 0.2160 |
| 0.4774        | 6.17  | 14300 | 1.0027          | 0.2180 |
| 0.4734        | 6.21  | 14400 | 1.0026          | 0.2170 |
| 0.486         | 6.26  | 14500 | 0.9994          | 0.2177 |
| 0.4815        | 6.3   | 14600 | 0.9977          | 0.2174 |
| 0.4972        | 6.34  | 14700 | 1.0004          | 0.2175 |
| 0.4832        | 6.38  | 14800 | 0.9922          | 0.2130 |
| 0.4682        | 6.43  | 14900 | 0.9998          | 0.2167 |
| 0.4654        | 6.47  | 15000 | 0.9886          | 0.2150 |
| 0.4665        | 6.51  | 15100 | 0.9844          | 0.2154 |
| 0.4696        | 6.56  | 15200 | 0.9801          | 0.2136 |
| 0.4732        | 6.6   | 15300 | 0.9830          | 0.2145 |
| 0.4391        | 6.64  | 15400 | 0.9886          | 0.2165 |
| 0.5035        | 6.69  | 15500 | 0.9872          | 0.2157 |
| 0.4721        | 6.73  | 15600 | 0.9895          | 0.2132 |
| 0.466         | 6.77  | 15700 | 0.9910          | 0.2147 |
| 0.4981        | 6.82  | 15800 | 0.9934          | 0.2157 |
| 0.4856        | 6.86  | 15900 | 0.9888          | 0.2126 |
| 0.4798        | 6.9   | 16000 | 0.9830          | 0.2150 |
| 0.4771        | 6.95  | 16100 | 0.9845          | 0.2153 |
| 0.473         | 6.99  | 16200 | 0.9814          | 0.2116 |
| 0.4256        | 7.03  | 16300 | 0.9771          | 0.2131 |
| 0.4133        | 7.08  | 16400 | 0.9803          | 0.2125 |
| 0.4051        | 7.12  | 16500 | 0.9778          | 0.2116 |
| 0.4274        | 7.16  | 16600 | 0.9809          | 0.2116 |
| 0.4307        | 7.2   | 16700 | 0.9720          | 0.2109 |
| 0.4223        | 7.25  | 16800 | 0.9730          | 0.2109 |
| 0.4246        | 7.29  | 16900 | 0.9710          | 0.2100 |
| 0.4478        | 7.33  | 17000 | 0.9670          | 0.2101 |
| 0.4016        | 7.38  | 17100 | 0.9664          | 0.2096 |
| 0.4289        | 7.42  | 17200 | 0.9667          | 0.2093 |
| 0.4107        | 7.46  | 17300 | 0.9661          | 0.2096 |
| 0.4643        | 7.51  | 17400 | 0.9665          | 0.2106 |
| 0.433         | 7.55  | 17500 | 0.9673          | 0.2097 |
| 0.4239        | 7.59  | 17600 | 0.9639          | 0.2096 |
| 0.4144        | 7.64  | 17700 | 0.9635          | 0.2091 |
| 0.428         | 7.68  | 17800 | 0.9604          | 0.2094 |
| 0.4312        | 7.72  | 17900 | 0.9585          | 0.2099 |
| 0.4164        | 7.77  | 18000 | 0.9599          | 0.2093 |
| 0.4308        | 7.81  | 18100 | 0.9587          | 0.2080 |
| 0.4177        | 7.85  | 18200 | 0.9575          | 0.2084 |
| 0.4509        | 7.89  | 18300 | 0.9567          | 0.2082 |
| 0.4244        | 7.94  | 18400 | 0.9558          | 0.2072 |
| 0.4246        | 7.98  | 18500 | 0.9552          | 0.2071 |


### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3